X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-algebra.ma;h=6be19d92c31ac4518d402650c362e85dc4b3fd9b;hb=c78cbede35ed85575e274864e6b6b9c635c6956d;hp=ce9583da36098ffd0861c9b517aa3c84561be823;hpb=b93b2e4f499c30b01b838f75a1e95df43920ffcc;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index ce9583da3..6be19d92c 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -13,7 +13,6 @@ (**************************************************************************) include "categories.ma". -include "logic/cprop_connectives.ma". inductive bool : Type0 := true : bool | false : bool. @@ -49,14 +48,6 @@ interpretation "unary morphism comprehension with proof" 'comprehension_by s \et interpretation "unary morphism1 comprehension with proof" 'comprehension_by s \eta.f p = (mk_unary_morphism1 s _ f p). -definition hint: Type_OF_category2 SET1 → setoid2. - intro; apply (setoid2_of_setoid1 t); qed. -coercion hint. - -definition hint2: Type_OF_category1 SET → objs2 SET1. - intro; apply (setoid1_of_setoid t); qed. -coercion hint2. - (* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete lattices, Definizione 0.9 *) (* USARE L'ESISTENZIALE DEBOLE *) @@ -84,7 +75,7 @@ record OAlgebra : Type2 := { (* ⇔ deve essere =, l'esiste debole *) oa_join_split: ∀I:SET.∀p.∀q:arrows2 SET1 I oa_P. - oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); + oa_overlap p (oa_join I q) ⇔ ∃i:carr I.oa_overlap p (q i); (*oa_base : setoid; 1) enum non e' il nome giusto perche' non e' suriettiva 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base @@ -142,12 +133,14 @@ intros; split; intro x; simplify; cases x; simplify; assumption;] qed. -notation "hovbox(a ∧ b)" left associative with precedence 35 -for @{ 'oa_meet_bin $a $b }. -interpretation "o-algebra binary meet" 'oa_meet_bin a b = +interpretation "o-algebra binary meet" 'and a b = (fun21 ___ (binary_meet _) a b). +coercion Type1_OF_OAlgebra nocomposites. + lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q). +(* next change to avoid universe inconsistency *) +change in ⊢ (?→%→%→?) with (Type1_OF_OAlgebra O); intros; lapply (oa_overlap_preserves_meet_ O p q f); lapply (prop21 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); [3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1; @@ -192,14 +185,14 @@ constructor 1; | constructor 1; (* tenere solo una uguaglianza e usare la proposizione 9.9 per le altre (unicita' degli aggiunti e del simmetrico) *) - [ apply (λp,q. And4 (eq2 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q)) + [ apply (λp,q. And42 (eq2 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q)) (eq2 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q)) (eq2 ? (or_f_ ?? p) (or_f_ ?? q)) (eq2 ? (or_f_star_ ?? p) (or_f_star_ ?? q))); | whd; simplify; intros; repeat split; intros; apply refl2; - | whd; simplify; intros; cases H; clear H; split; + | whd; simplify; intros; cases a; clear a; split; intro a; apply sym1; generalize in match a;assumption; - | whd; simplify; intros; cases H; cases H1; clear H H1; split; intro a; + | whd; simplify; intros; cases a; cases a1; clear a a1; split; intro a; [ apply (.= (e a)); apply e4; | apply (.= (e1 a)); apply e5; | apply (.= (e2 a)); apply e6; @@ -239,28 +232,29 @@ qed. coercion arrows1_OF_ORelation_setoid. -lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → P ⇒ Q. +lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → unary_morphism1 P Q. intros; apply (or_f ?? t); qed. coercion umorphism_OF_ORelation_setoid. +lemma umorphism_setoid_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → unary_morphism1_setoid1 P Q. +intros; apply (or_f ?? t); +qed. + +coercion umorphism_setoid_OF_ORelation_setoid. -lemma uncurry_arrows : ∀B,C. arrows1 SET B C → B → C. -intros; apply ((fun1 ?? t) t1); +lemma uncurry_arrows : ∀B,C. ORelation_setoid B C → B → C. +intros; apply ((fun11 ?? t) t1); qed. coercion uncurry_arrows 1. -lemma hint6 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply t;qed. +lemma hint6: ∀P,Q. Type_OF_setoid2 (hint5 P ⇒ hint5 Q) → unary_morphism1 P Q. + intros; apply t; +qed. coercion hint6. -(* -lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed. -coercion hint2 nocomposites. -*) - - notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. @@ -290,13 +284,13 @@ intros; apply (or_prop3_ ?? F p q); qed. definition ORelation_composition : ∀P,Q,R. - binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). + binary_morphism2 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). intros; constructor 1; [ intros (F G); constructor 1; [ apply (G ∘ F); - | apply (G⎻* ∘ F⎻* ); + | apply rule (G⎻* ∘ F⎻* ); | apply (F* ∘ G* ); | apply (F⎻ ∘ G⎻); | intros; @@ -312,24 +306,44 @@ constructor 1; apply or_prop3; ] | intros; split; simplify; - [1,3: unfold arrows1_OF_ORelation_setoid; apply ((†H)‡(†H1)); - |2,4: apply ((†H1)‡(†H));]] + [1,3: unfold umorphism_setoid_OF_ORelation_setoid; unfold arrows1_OF_ORelation_setoid; apply ((†e)‡(†e1)); + |2,4: apply ((†e1)‡(†e));]] qed. -definition OA : category1. +definition OA : category2. split; [ apply (OAlgebra); | intros; apply (ORelation_setoid o o1); | intro O; split; - [1,2,3,4: apply id1; + [1,2,3,4: apply id2; |5,6,7:intros; apply refl1;] | apply ORelation_composition; | intros (P Q R S F G H); split; [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); - apply (comp_assoc1 ????? (F⎻* ) (G⎻* ) (H⎻* )); - | apply ((comp_assoc1 ????? (H⎻) (G⎻) (F⎻))^-1); - | apply ((comp_assoc1 ????? F G H)^-1); - | apply ((comp_assoc1 ????? H* G* F* ));] -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left1; -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right1;] -qed. \ No newline at end of file + apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); + | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); + | apply ((comp_assoc2 ????? F G H)^-1); + | apply ((comp_assoc2 ????? H* G* F* ));] +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] +qed. + +lemma setoid1_of_OA: OA → setoid1. + intro; apply (oa_P t); +qed. +coercion setoid1_of_OA. + +lemma SET1_of_OA: OA → SET1. + intro; whd; apply (setoid1_of_OA t); +qed. +coercion SET1_of_OA. + +lemma objs2_SET1_OF_OA: OA → objs2 SET1. + intro; whd; apply (setoid1_of_OA t); +qed. +coercion objs2_SET1_OF_OA. + +lemma Type_OF_category2_OF_SET1_OF_OA: OA → Type_OF_category2 SET1. + intro; apply (oa_P t); +qed. +coercion Type_OF_category2_OF_SET1_OF_OA.