X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-algebra.ma;h=6f58f53b242e931e37555f3f2bf3ad6d56b31985;hb=3e51297756e2c2422db7e35ca03af7123ff2498d;hp=a84fc24770ac859b40040b56a3ecdaf826d5c8ca;hpb=bd9161789ad35aae35b66e1f9bba660d8fde3c61;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index a84fc2477..6f58f53b2 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -13,7 +13,6 @@ (**************************************************************************) include "categories.ma". -include "logic/cprop_connectives.ma". inductive bool : Type0 := true : bool | false : bool. @@ -49,13 +48,8 @@ interpretation "unary morphism comprehension with proof" 'comprehension_by s \et interpretation "unary morphism1 comprehension with proof" 'comprehension_by s \eta.f p = (mk_unary_morphism1 s _ f p). -definition hint: Type_OF_category2 SET1 → setoid2. - intro; apply (setoid2_of_setoid1 t); qed. -coercion hint. - -definition hint2: Type_OF_category1 SET → objs2 SET1. - intro; apply (setoid1_of_setoid t); qed. -coercion hint2. +definition carr' ≝ λx:Type_OF_category1 SET.Type_OF_Type0 (carr x). +coercion carr'. (* we prefer the lower carrier projection *) (* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete lattices, Definizione 0.9 *) @@ -65,8 +59,8 @@ record OAlgebra : Type2 := { oa_P :> SET1; oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1, CPROP importante che sia small *) oa_overlap: binary_morphism1 oa_P oa_P CPROP; - oa_meet: ∀I:SET.unary_morphism2 (arrows2 SET1 I oa_P) oa_P; - oa_join: ∀I:SET.unary_morphism2 (arrows2 SET1 I oa_P) oa_P; + oa_meet: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; + oa_join: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; oa_one: oa_P; oa_zero: oa_P; oa_leq_refl: ∀a:oa_P. oa_leq a a; @@ -74,8 +68,8 @@ record OAlgebra : Type2 := { oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c; oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a; (* Errore: = in oa_meet_inf e oa_join_sup *) - oa_meet_inf: ∀I.∀p_i.∀p:oa_P.oa_leq p (oa_meet I p_i) → ∀i:I.oa_leq p (p_i i); - oa_join_sup: ∀I.∀p_i.∀p:oa_P.oa_leq (oa_join I p_i) p → ∀i:I.oa_leq (p_i i) p; + oa_meet_inf: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq p (oa_meet I p_i) = ∀i:I.oa_leq p (p_i i); + oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = ∀i:I.oa_leq (p_i i) p; oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p; oa_one_top: ∀p:oa_P.oa_leq p oa_one; oa_overlap_preserves_meet_: @@ -83,8 +77,8 @@ record OAlgebra : Type2 := { (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q }); (* ⇔ deve essere =, l'esiste debole *) oa_join_split: - ∀I:SET.∀p.∀q:arrows2 SET1 I oa_P. - oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); + ∀I:SET.∀p.∀q:I ⇒ oa_P. + oa_overlap p (oa_join I q) = ∃i:I.oa_overlap p (q i); (*oa_base : setoid; 1) enum non e' il nome giusto perche' non e' suriettiva 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base @@ -99,7 +93,7 @@ interpretation "o-algebra leq" 'leq a b = (fun21 ___ (oa_leq _) a b). notation "hovbox(a mpadded width -150% (>)< b)" non associative with precedence 45 for @{ 'overlap $a $b}. -interpretation "o-algebra overlap" 'overlap a b = (fun22 ___ (oa_overlap _) a b). +interpretation "o-algebra overlap" 'overlap a b = (fun21 ___ (oa_overlap _) a b). notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" non associative with precedence 50 for @{ 'oa_meet $p }. @@ -142,14 +136,16 @@ intros; split; intro x; simplify; cases x; simplify; assumption;] qed. -notation "hovbox(a ∧ b)" left associative with precedence 35 -for @{ 'oa_meet_bin $a $b }. -interpretation "o-algebra binary meet" 'oa_meet_bin a b = +interpretation "o-algebra binary meet" 'and a b = (fun21 ___ (binary_meet _) a b). +coercion Type1_OF_OAlgebra nocomposites. + lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q). -intros; lapply (oa_overlap_preservers_meet_ O p q f); -lapply (prop1 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); +(* next change to avoid universe inconsistency *) +change in ⊢ (?→%→%→?) with (Type1_OF_OAlgebra O); +intros; lapply (oa_overlap_preserves_meet_ O p q f); +lapply (prop21 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); [3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1; qed. @@ -166,95 +162,101 @@ notation > "hovbox(a ∨ b)" left associative with precedence 49 for @{ 'oa_join (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. interpretation "o-algebra join" 'oa_join f = - (fun_1 __ (oa_join __) f). + (fun12 __ (oa_join __) f). interpretation "o-algebra join with explicit function" 'oa_join_mk f = - (fun_1 __ (oa_join __) (mk_unary_morphism _ _ f _)). + (fun12 __ (oa_join __) (mk_unary_morphism _ _ f _)). -record ORelation (P,Q : OAlgebra) : Type ≝ { - or_f_ : arrows1 SET P Q; - or_f_minus_star_ : arrows1 SET P Q; - or_f_star_ : arrows1 SET Q P; - or_f_minus_ : arrows1 SET Q P; +definition hint5: OAlgebra → objs2 SET1. + intro; apply (oa_P o); +qed. +coercion hint5. + +record ORelation (P,Q : OAlgebra) : Type2 ≝ { + or_f_ : P ⇒ Q; + or_f_minus_star_ : P ⇒ Q; + or_f_star_ : Q ⇒ P; + or_f_minus_ : Q ⇒ P; or_prop1_ : ∀p,q. (or_f_ p ≤ q) = (p ≤ or_f_star_ q); or_prop2_ : ∀p,q. (or_f_minus_ p ≤ q) = (p ≤ or_f_minus_star_ q); or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q) }. - -definition ORelation_setoid : OAlgebra → OAlgebra → setoid1. +definition ORelation_setoid : OAlgebra → OAlgebra → setoid2. intros (P Q); constructor 1; [ apply (ORelation P Q); | constructor 1; (* tenere solo una uguaglianza e usare la proposizione 9.9 per le altre (unicita' degli aggiunti e del simmetrico) *) - [ apply (λp,q. And4 (eq1 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q)) - (eq1 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q)) - (eq1 ? (or_f_ ?? p) (or_f_ ?? q)) - (eq1 ? (or_f_star_ ?? p) (or_f_star_ ?? q))); - | whd; simplify; intros; repeat split; intros; apply refl1; - | whd; simplify; intros; cases H; clear H; split; - intro a; apply sym; generalize in match a;assumption; - | whd; simplify; intros; cases H; cases H1; clear H H1; split; intro a; - [ apply (.= (H2 a)); apply H6; - | apply (.= (H3 a)); apply H7; - | apply (.= (H4 a)); apply H8; - | apply (.= (H5 a)); apply H9;]]] -qed. - -definition or_f_minus_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q. + [ apply (λp,q. And42 (eq2 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q)) + (eq2 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q)) + (eq2 ? (or_f_ ?? p) (or_f_ ?? q)) + (eq2 ? (or_f_star_ ?? p) (or_f_star_ ?? q))); + | whd; simplify; intros; repeat split; intros; apply refl2; + | whd; simplify; intros; cases a; clear a; split; + intro a; apply sym1; generalize in match a;assumption; + | whd; simplify; intros; cases a; cases a1; clear a a1; split; intro a; + [ apply (.= (e a)); apply e4; + | apply (.= (e1 a)); apply e5; + | apply (.= (e2 a)); apply e6; + | apply (.= (e3 a)); apply e7;]]] +qed. + +definition or_f_minus_star: + ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). intros; constructor 1; [ apply or_f_minus_star_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. -definition or_f: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q. +definition or_f: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). intros; constructor 1; [ apply or_f_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. coercion or_f. -definition or_f_minus: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P. +definition or_f_minus: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). intros; constructor 1; [ apply or_f_minus_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. -definition or_f_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P. +definition or_f_star: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). intros; constructor 1; [ apply or_f_star_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. -lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q. -intros; apply (or_f ?? c); +lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒ Q). +intros; apply (or_f ?? t); qed. -coercion arrows1_OF_ORelation_setoid nocomposites. +coercion arrows1_OF_ORelation_setoid. -lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → P ⇒ Q. -intros; apply (or_f ?? c); +lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → unary_morphism1 P Q. +intros; apply (or_f ?? t); qed. coercion umorphism_OF_ORelation_setoid. - -lemma uncurry_arrows : ∀B,C. arrows1 SET B C → B → C. -intros; apply ((fun_1 ?? c) t); +lemma umorphism_setoid_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → unary_morphism1_setoid1 P Q. +intros; apply (or_f ?? t); qed. -coercion uncurry_arrows 1. +coercion umorphism_setoid_OF_ORelation_setoid. -lemma hint3 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply c;qed. -coercion hint3 nocomposites. +lemma uncurry_arrows : ∀B,C. ORelation_setoid B C → B → C. +intros; apply ((fun11 ?? t) t1); +qed. -(* -lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed. -coercion hint2 nocomposites. -*) +coercion uncurry_arrows 1. +lemma hint6: ∀P,Q. Type_OF_setoid2 (hint5 P ⇒ hint5 Q) → unary_morphism1 P Q. + intros; apply t; +qed. +coercion hint6. notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. @@ -265,9 +267,9 @@ notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r} notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}. -interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun_1 __ (or_f_minus_star _ _) r). -interpretation "o-relation f⎻" 'OR_f_minus r = (fun_1 __ (or_f_minus _ _) r). -interpretation "o-relation f*" 'OR_f_star r = (fun_1 __ (or_f_star _ _) r). +interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun12 __ (or_f_minus_star _ _) r). +interpretation "o-relation f⎻" 'OR_f_minus r = (fun12 __ (or_f_minus _ _) r). +interpretation "o-relation f*" 'OR_f_star r = (fun12 __ (or_f_star _ _) r). definition or_prop1 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. (F p ≤ q) = (p ≤ F* q). @@ -285,13 +287,13 @@ intros; apply (or_prop3_ ?? F p q); qed. definition ORelation_composition : ∀P,Q,R. - binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). + binary_morphism2 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). intros; constructor 1; [ intros (F G); constructor 1; [ apply (G ∘ F); - | apply (G⎻* ∘ F⎻* ); + | apply rule (G⎻* ∘ F⎻* ); | apply (F* ∘ G* ); | apply (F⎻ ∘ G⎻); | intros; @@ -307,24 +309,44 @@ constructor 1; apply or_prop3; ] | intros; split; simplify; - [1,3: unfold arrows1_OF_ORelation_setoid; apply ((†H)‡(†H1)); - |2,4: apply ((†H1)‡(†H));]] + [1,3: unfold umorphism_setoid_OF_ORelation_setoid; unfold arrows1_OF_ORelation_setoid; apply ((†e)‡(†e1)); + |2,4: apply ((†e1)‡(†e));]] qed. -definition OA : category1. +definition OA : category2. split; [ apply (OAlgebra); | intros; apply (ORelation_setoid o o1); | intro O; split; - [1,2,3,4: apply id1; + [1,2,3,4: apply id2; |5,6,7:intros; apply refl1;] | apply ORelation_composition; | intros (P Q R S F G H); split; [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); - apply (comp_assoc1 ????? (F⎻* ) (G⎻* ) (H⎻* )); - | apply ((comp_assoc1 ????? (H⎻) (G⎻) (F⎻))^-1); - | apply ((comp_assoc1 ????? F G H)^-1); - | apply ((comp_assoc1 ????? H* G* F* ));] -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left1; -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right1;] -qed. \ No newline at end of file + apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); + | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); + | apply ((comp_assoc2 ????? F G H)^-1); + | apply ((comp_assoc2 ????? H* G* F* ));] +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] +qed. + +lemma setoid1_of_OA: OA → setoid1. + intro; apply (oa_P t); +qed. +coercion setoid1_of_OA. + +lemma SET1_of_OA: OA → SET1. + intro; whd; apply (setoid1_of_OA t); +qed. +coercion SET1_of_OA. + +lemma objs2_SET1_OF_OA: OA → objs2 SET1. + intro; whd; apply (setoid1_of_OA t); +qed. +coercion objs2_SET1_OF_OA. + +lemma Type_OF_category2_OF_SET1_OF_OA: OA → Type_OF_category2 SET1. + intro; apply (oa_P t); +qed. +coercion Type_OF_category2_OF_SET1_OF_OA.