X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-algebra.ma;h=806859a45dd0ae4e3d70d265843b9a54bdeaf0a4;hb=e78cf74f8976cf0ca554f64baa9979d0423ee927;hp=9e8b473b6e8ff85d753ed67da84af87aefa9b208;hpb=05958b9e55bdbbde3b61211633237ebeaa07bb6d;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index 9e8b473b6..806859a45 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -12,48 +12,31 @@ (* *) (**************************************************************************) -include "datatypes/categories.ma". -include "logic/cprop_connectives.ma". +include "categories.ma". -inductive bool : Type := true : bool | false : bool. +inductive bool : Type0 := true : bool | false : bool. -<<<<<<< .mine -lemma BOOL : setoid. -======= lemma BOOL : objs1 SET. ->>>>>>> .r9407 constructor 1; [apply bool] constructor 1; [ intros (x y); apply (match x with [ true ⇒ match y with [ true ⇒ True | _ ⇒ False] | false ⇒ match y with [ true ⇒ False | false ⇒ True ]]); | whd; simplify; intros; cases x; apply I; | whd; simplify; intros 2; cases x; cases y; simplify; intros; assumption; -| whd; simplify; intros 3; cases x; cases y; cases z; simplify; intros; try assumption; apply I] +| whd; simplify; intros 3; cases x; cases y; cases z; simplify; intros; + try assumption; apply I] qed. -definition hint: objs1 SET → setoid. - intros; apply o; -qed. - -coercion hint. - lemma IF_THEN_ELSE_p : - ∀S:setoid.∀a,b:S.∀x,y:BOOL.x = y → + ∀S:setoid1.∀a,b:S.∀x,y:BOOL.x = y → (λm.match m with [ true ⇒ a | false ⇒ b ]) x = (λm.match m with [ true ⇒ a | false ⇒ b ]) y. -intros; cases x in H; cases y; simplify; intros; try apply refl; whd in H; cases H; -qed. - -<<<<<<< .mine -interpretation "unary morphism comprehension with no proof" 'comprehension T P = -======= -lemma if_then_else : ∀T:SET. ∀a,b:T. arrows1 SET BOOL T. -intros; constructor 1; intros; -[ apply (match c with [ true ⇒ t | false ⇒ t1 ]); -| apply (IF_THEN_ELSE_p T t t1 a a' H);] +whd in ⊢ (?→?→?→%→?); +intros; cases x in e; cases y; simplify; intros; try apply refl1; whd in e; cases e; qed. -interpretation "mk " 'comprehension T P = ->>>>>>> .r9407 - (mk_unary_morphism T _ P _). +interpretation "unary morphism comprehension with no proof" 'comprehension T P = + (mk_unary_morphism T ? P ?). +interpretation "unary morphism1 comprehension with no proof" 'comprehension T P = + (mk_unary_morphism1 T ? P ?). notation > "hvbox({ ident i ∈ s | term 19 p | by })" with precedence 90 for @{ 'comprehension_by $s (λ${ident i}. $p) $by}. @@ -61,50 +44,40 @@ notation < "hvbox({ ident i ∈ s | term 19 p })" with precedence 90 for @{ 'comprehension_by $s (λ${ident i}:$_. $p) $by}. interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p = - (mk_unary_morphism s _ f p). - -<<<<<<< .mine -======= -definition A : ∀S:SET.∀a,b:S.arrows1 SET BOOL S. -apply (λS,a,b.{ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b] | IF_THEN_ELSE_p S a b}). -qed. - ->>>>>>> .r9407 -record OAlgebra : Type := { - oa_P :> SET; - oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1 *) + (mk_unary_morphism s ? f p). +interpretation "unary morphism1 comprehension with proof" 'comprehension_by s \eta.f p = + (mk_unary_morphism1 s ? f p). + +(* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete + lattices, Definizione 0.9 *) +(* USARE L'ESISTENZIALE DEBOLE *) +record OAlgebra : Type2 := { + oa_P :> SET1; + oa_leq : binary_morphism1 oa_P oa_P CPROP; oa_overlap: binary_morphism1 oa_P oa_P CPROP; -<<<<<<< .mine - oa_meet: ∀I:setoid.unary_morphism (unary_morphism_setoid I oa_P) oa_P; - oa_join: ∀I:setoid.unary_morphism (unary_morphism_setoid I oa_P) oa_P; -======= - oa_meet: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P; - oa_join: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P; ->>>>>>> .r9407 + oa_meet: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; + oa_join: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; oa_one: oa_P; oa_zero: oa_P; oa_leq_refl: ∀a:oa_P. oa_leq a a; oa_leq_antisym: ∀a,b:oa_P.oa_leq a b → oa_leq b a → a = b; oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c; oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a; - oa_meet_inf: ∀I.∀p_i.∀p:oa_P.oa_leq p (oa_meet I p_i) → ∀i:I.oa_leq p (p_i i); - oa_join_sup: ∀I.∀p_i.∀p:oa_P.oa_leq (oa_join I p_i) p → ∀i:I.oa_leq (p_i i) p; + oa_meet_inf: + ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P. + oa_leq p (oa_meet I p_i) = (∀i:I.oa_leq p (p_i i)); + oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = (∀i:I.oa_leq (p_i i) p); oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p; oa_one_top: ∀p:oa_P.oa_leq p oa_one; - oa_overlap_preservers_meet: - ∀p,q.oa_overlap p q → oa_overlap p + oa_overlap_preserves_meet_: + ∀p,q:oa_P.oa_overlap p q → oa_overlap p (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q }); -<<<<<<< .mine oa_join_split: - ∀I:setoid.∀p.∀q:I ⇒ oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); - (* - oa_base : setoid; -======= - (*(oa_meet BOOL (if_then_else oa_P p q));*) - oa_join_split: (* ha I → oa_P da castare a funX (ums A oa_P) *) - ∀I:SET.∀p.∀q:arrows1 SET I oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); + ∀I:SET.∀p.∀q:I ⇒ oa_P. + oa_overlap p (oa_join I q) = (∃i:I.oa_overlap p (q i)); (*oa_base : setoid; ->>>>>>> .r9407 + 1) enum non e' il nome giusto perche' non e' suriettiva + 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base oa_enum : ums oa_base oa_P; oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q *) @@ -112,28 +85,73 @@ record OAlgebra : Type := { ∀p,q.(∀r.oa_overlap p r → oa_overlap q r) → oa_leq p q }. -interpretation "o-algebra leq" 'leq a b = (fun1 ___ (oa_leq _) a b). +interpretation "o-algebra leq" 'leq a b = (fun21 ??? (oa_leq ?) a b). notation "hovbox(a mpadded width -150% (>)< b)" non associative with precedence 45 for @{ 'overlap $a $b}. -interpretation "o-algebra overlap" 'overlap a b = (fun1 ___ (oa_overlap _) a b). +interpretation "o-algebra overlap" 'overlap a b = (fun21 ??? (oa_overlap ?) a b). notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" non associative with precedence 50 for @{ 'oa_meet $p }. notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈  I) break term 90 p)" non associative with precedence 50 for @{ 'oa_meet_mk (λ${ident i}:$I.$p) }. -notation < "hovbox(a ∧ b)" left associative with precedence 35 -for @{ 'oa_meet_mk (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. notation > "hovbox(∧ f)" non associative with precedence 60 for @{ 'oa_meet $f }. -notation > "hovbox(a ∧ b)" left associative with precedence 50 -for @{ 'oa_meet (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. - interpretation "o-algebra meet" 'oa_meet f = - (fun_1 __ (oa_meet __) f). + (fun12 ?? (oa_meet ??) f). interpretation "o-algebra meet with explicit function" 'oa_meet_mk f = - (fun_1 __ (oa_meet __) (mk_unary_morphism _ _ f _)). + (fun12 ?? (oa_meet ??) (mk_unary_morphism ?? f ?)). + +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 50 for @{ 'oa_join $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 50 for @{ 'oa_join_mk (λ${ident i}:$I.$p) }. + +notation > "hovbox(∨ f)" non associative with precedence 60 +for @{ 'oa_join $f }. +interpretation "o-algebra join" 'oa_join f = + (fun12 ?? (oa_join ??) f). +interpretation "o-algebra join with explicit function" 'oa_join_mk f = + (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). + +definition binary_meet : ∀O:OAlgebra. binary_morphism1 O O O. +intros; split; +[ intros (p q); + apply (∧ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); +| intros; lapply (prop12 ? O (oa_meet O BOOL)); + [2: apply ({ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b ] | IF_THEN_ELSE_p ? a b }); + |3: apply ({ x ∈ BOOL | match x with [ true ⇒ a' | false ⇒ b' ] | IF_THEN_ELSE_p ? a' b' }); + | apply Hletin;] + intro x; simplify; cases x; simplify; assumption;] +qed. + +interpretation "o-algebra binary meet" 'and a b = + (fun21 ??? (binary_meet ?) a b). + +prefer coercion Type1_OF_OAlgebra. + +definition binary_join : ∀O:OAlgebra. binary_morphism1 O O O. +intros; split; +[ intros (p q); + apply (∨ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); +| intros; lapply (prop12 ? O (oa_join O BOOL)); + [2: apply ({ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b ] | IF_THEN_ELSE_p ? a b }); + |3: apply ({ x ∈ BOOL | match x with [ true ⇒ a' | false ⇒ b' ] | IF_THEN_ELSE_p ? a' b' }); + | apply Hletin;] + intro x; simplify; cases x; simplify; assumption;] +qed. + +interpretation "o-algebra binary join" 'or a b = + (fun21 ??? (binary_join ?) a b). + +lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q). +(* next change to avoid universe inconsistency *) +change in ⊢ (?→%→%→?) with (Type1_OF_OAlgebra O); +intros; lapply (oa_overlap_preserves_meet_ O p q f); +lapply (prop21 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); +[3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1; +qed. notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" non associative with precedence 49 for @{ 'oa_join $p }. @@ -148,160 +166,279 @@ notation > "hovbox(a ∨ b)" left associative with precedence 49 for @{ 'oa_join (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. interpretation "o-algebra join" 'oa_join f = - (fun_1 __ (oa_join __) f). + (fun12 ?? (oa_join ??) f). interpretation "o-algebra join with explicit function" 'oa_join_mk f = - (fun_1 __ (oa_join __) (mk_unary_morphism _ _ f _)). - -record ORelation (P,Q : OAlgebra) : Type ≝ { - or_f :> arrows1 SET P Q; - or_f_minus_star : arrows1 SET P Q; - or_f_star : arrows1 SET Q P; - or_f_minus : arrows1 SET Q P; - or_prop1 : ∀p,q. (or_f p ≤ q) = (p ≤ or_f_star q); - or_prop2 : ∀p,q. (or_f_minus p ≤ q) = (p ≤ or_f_minus_star q); - or_prop3 : ∀p,q. (or_f p >< q) = (p >< or_f_minus q) + (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). + +record ORelation (P,Q : OAlgebra) : Type2 ≝ { + or_f_ : carr2 (P ⇒ Q); + or_f_minus_star_ : carr2(P ⇒ Q); + or_f_star_ : carr2(Q ⇒ P); + or_f_minus_ : carr2(Q ⇒ P); + or_prop1_ : ∀p,q. (or_f_ p ≤ q) = (p ≤ or_f_star_ q); + or_prop2_ : ∀p,q. (or_f_minus_ p ≤ q) = (p ≤ or_f_minus_star_ q); + or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q) }. +definition ORelation_setoid : OAlgebra → OAlgebra → setoid2. +intros (P Q); +constructor 1; +[ apply (ORelation P Q); +| constructor 1; + (* tenere solo una uguaglianza e usare la proposizione 9.9 per + le altre (unicita' degli aggiunti e del simmetrico) *) + [ apply (λp,q. And42 + (or_f_minus_star_ ?? p = or_f_minus_star_ ?? q) + (or_f_minus_ ?? p = or_f_minus_ ?? q) + (or_f_ ?? p = or_f_ ?? q) + (or_f_star_ ?? p = or_f_star_ ?? q)); + | whd; simplify; intros; repeat split; intros; apply refl2; + | whd; simplify; intros; cases a; clear a; split; + intro a; apply sym1; generalize in match a;assumption; + | whd; simplify; intros; cases a; cases a1; clear a a1; split; intro a; + [ apply (.= (e a)); apply e4; + | apply (.= (e1 a)); apply e5; + | apply (.= (e2 a)); apply e6; + | apply (.= (e3 a)); apply e7;]]] +qed. + +definition ORelation_of_ORelation_setoid : + ∀P,Q.ORelation_setoid P Q → ORelation P Q ≝ λP,Q,x.x. +coercion ORelation_of_ORelation_setoid. + +definition or_f_minus_star: + ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). + intros; constructor 1; + [ apply or_f_minus_star_; + | intros; cases e; assumption] +qed. + +definition or_f: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). + intros; constructor 1; + [ apply or_f_; + | intros; cases e; assumption] +qed. + +definition or_f_minus: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). + intros; constructor 1; + [ apply or_f_minus_; + | intros; cases e; assumption] +qed. + +definition or_f_star: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). + intros; constructor 1; + [ apply or_f_star_; + | intros; cases e; assumption] +qed. + +lemma arrows1_of_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒ Q). +intros; apply (or_f ?? c); +qed. +coercion arrows1_of_ORelation_setoid. + notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. -interpretation "o-relation f*" 'OR_f_star r = (or_f_star _ _ r). notation "r \sup (⎻* )" non associative with precedence 90 for @{'OR_f_minus_star $r}. notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r}. -interpretation "o-relation f⎻*" 'OR_f_minus_star r = (or_f_minus_star _ _ r). notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}. -interpretation "o-relation f⎻" 'OR_f_minus r = (or_f_minus _ _ r). -axiom DAEMON: False. +interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun12 ?? (or_f_minus_star ? ?) r). +interpretation "o-relation f⎻" 'OR_f_minus r = (fun12 ?? (or_f_minus ? ?) r). +interpretation "o-relation f*" 'OR_f_star r = (fun12 ?? (or_f_star ? ?) r). -definition ORelation_setoid : OAlgebra → OAlgebra → setoid1. -intros (P Q); -constructor 1; -[ apply (ORelation P Q); -| constructor 1; -<<<<<<< .mine - [ alias symbol "and" = "constructive and". - apply (λp,q. And4 (∀a.p⎻* a = q⎻* a) (∀a.p⎻ a = q⎻ a) - (∀a.p a = q a) (∀a.p* a = q* a)); - | whd; simplify; intros; repeat split; intros; apply refl; -======= - [ apply (λp,q. eq1 ? p⎻* q⎻* ∧ eq1 ? p⎻ q⎻ ∧ eq1 ? p q ∧ eq1 ? p* q* ); - | whd; simplify; intros; repeat split; intros; apply refl1; ->>>>>>> .r9407 -<<<<<<< .mine - | whd; simplify; intros; cases H; clear H; split; - intro a; apply sym; generalize in match a;assumption; - | whd; simplify; intros; cases H; cases H1; clear H H1; split; intro a; - [ apply (.= (H2 a)); apply H6; - | apply (.= (H3 a)); apply H7; - | apply (.= (H4 a)); apply H8; - | apply (.= (H5 a)); apply H9;]]] -qed. -======= - | whd; simplify; intros; cases H; cases H1; cases H3; clear H H3 H1; - repeat split; intros; apply sym1; assumption; - | whd; simplify; intros; cases H; cases H1; cases H2; cases H4; cases H6; cases H8; - repeat split; intros; clear H H1 H2 H4 H6 H8; apply trans1; - [2: apply H10; - |5: apply H11; - |8: apply H7; - |11: apply H3; - |1,4,7,10: skip - |*: assumption - ]]] -qed. ->>>>>>> .r9407 - -<<<<<<< .mine -definition ORelation_composition : ∀P,Q,R. -======= -lemma hint1 : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q. intros; apply (or_f ?? c);qed. -coercion hint1. +definition or_prop1 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. + (F p ≤ q) = (p ≤ F* q). +intros; apply (or_prop1_ ?? F p q); +qed. -lemma hint3 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply c;qed. -coercion hint3. +definition or_prop2 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. + (F⎻ p ≤ q) = (p ≤ F⎻* q). +intros; apply (or_prop2_ ?? F p q); +qed. -lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed. -coercion hint2. +definition or_prop3 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. + (F p >< q) = (p >< F⎻ q). +intros; apply (or_prop3_ ?? F p q); +qed. -definition composition : ∀P,Q,R. ->>>>>>> .r9407 - binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). +definition ORelation_composition : ∀P,Q,R. + binary_morphism2 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). intros; constructor 1; [ intros (F G); constructor 1; -<<<<<<< .mine - [ apply {x ∈ P | G (F x)}; intros; simplify; apply (†(†H)); - | apply {x ∈ P | G⎻* (F⎻* x)}; intros; simplify; apply (†(†H)); - | apply {x ∈ R | F* (G* x)}; intros; simplify; apply (†(†H)); - | apply {x ∈ R | F⎻ (G⎻ x)}; intros; simplify; apply (†(†H)); - | intros; simplify; - lapply (or_prop1 ?? G (F p) q) as H1; lapply (or_prop1 ?? F p (G* q)) as H2; - split; intro H; - [ apply (if1 ?? H2); apply (if1 ?? H1); apply H; - | apply (fi1 ?? H1); apply (fi1 ?? H2); apply H;] - | intros; simplify; - lapply (or_prop2 ?? G p (F⎻* q)) as H1; lapply (or_prop2 ?? F (G⎻ p) q) as H2; - split; intro H; - [ apply (if1 ?? H1); apply (if1 ?? H2); apply H; - | apply (fi1 ?? H2); apply (fi1 ?? H1); apply H;] - | intros; simplify; - lapply (or_prop3 ?? F p (G⎻ q)) as H1; lapply (or_prop3 ?? G (F p) q) as H2; - split; intro H; - [ apply (if1 ?? H1); apply (if1 ?? H2); apply H; - | apply (fi1 ?? H2); apply (fi1 ?? H1); apply H;]] -| intros; simplify; split; simplify; intros; elim DAEMON;] -======= [ apply (G ∘ F); - | apply (G⎻* ∘ F⎻* ); + | apply rule (G⎻* ∘ F⎻* ); | apply (F* ∘ G* ); | apply (F⎻ ∘ G⎻); - | intros; change with ((G (F p) ≤ q) = (p ≤ (F* (G* q)))); - apply (.= or_prop1 ??? (F p) ?); - apply (.= or_prop1 ??? p ?); - apply refl1 - | intros; change with ((F⎻ (G⎻ p) ≤ q) = (p ≤ (G⎻* (F⎻* q)))); - apply (.= or_prop2 ??? (G⎻ p) ?); - apply (.= or_prop2 ??? p ?); - apply refl1; + | intros; + change with ((G (F p) ≤ q) = (p ≤ (F* (G* q)))); + apply (.= (or_prop1 :?)); + apply (or_prop1 :?); + | intros; + change with ((F⎻ (G⎻ p) ≤ q) = (p ≤ (G⎻* (F⎻* q)))); + apply (.= (or_prop2 :?)); + apply or_prop2 ; | intros; change with ((G (F (p)) >< q) = (p >< (F⎻ (G⎻ q)))); - apply (.= or_prop3 ??? (F p) ?); - apply (.= or_prop3 ??? p ?); - apply refl1 + apply (.= (or_prop3 :?)); + apply or_prop3; ] -| intros; repeat split; simplify; cases DAEMON (* - [ apply trans1; [2: apply prop1; [3: apply rule #; | skip | 4: - apply rule (†?); - - lapply (.= ((†H1)‡#)); [8: apply Hletin; - [ apply trans1; [2: lapply (prop1); [apply Hletin; -*)] ->>>>>>> .r9407 +| intros; split; simplify; + [3: unfold arrows1_of_ORelation_setoid; apply ((†e)‡(†e1)); + |1: apply ((†e)‡(†e1)); + |2,4: apply ((†e1)‡(†e));]] qed. -definition OA : category1. +definition OA : category2. split; [ apply (OAlgebra); | intros; apply (ORelation_setoid o o1); | intro O; split; -<<<<<<< .mine - [1,2,3,4: constructor 1; [1,3,5,7:apply (λx.x);|*:intros;assumption] - |5,6,7:intros;split;intros; assumption;] -|4: apply ORelation_composition; -|*: elim DAEMON;] -qed. + [1,2,3,4: apply id2; + |5,6,7:intros; apply refl1;] +| apply ORelation_composition; +| intros (P Q R S F G H); split; + [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); + apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); + | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); + | apply ((comp_assoc2 ????? F G H)^-1); + | apply ((comp_assoc2 ????? H* G* F* ));] +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] +qed. +definition OAlgebra_of_objs2_OA: objs2 OA → OAlgebra ≝ λx.x. +coercion OAlgebra_of_objs2_OA. + +definition ORelation_setoid_of_arrows2_OA: + ∀P,Q. arrows2 OA P Q → ORelation_setoid P Q ≝ λP,Q,c.c. +coercion ORelation_setoid_of_arrows2_OA. + +prefer coercion Type_OF_objs2. + +(* alias symbol "eq" = "setoid1 eq". *) + +(* qui la notazione non va *) +lemma leq_to_eq_join: ∀S:OA.∀p,q:S. p ≤ q → q = (binary_join ? p q). + intros; + apply oa_leq_antisym; + [ apply oa_density; intros; + apply oa_overlap_sym; + unfold binary_join; simplify; + apply (. (oa_join_split : ?)); + exists; [ apply false ] + apply oa_overlap_sym; + assumption + | unfold binary_join; simplify; + apply (. (oa_join_sup : ?)); intro; + cases i; whd in ⊢ (? ? ? ? ? % ?); + [ assumption | apply oa_leq_refl ]] +qed. +lemma overlap_monotone_left: ∀S:OA.∀p,q,r:S. p ≤ q → p >< r → q >< r. + intros; + apply (. (leq_to_eq_join : ?)‡#); + [ apply f; + | skip + | apply oa_overlap_sym; + unfold binary_join; simplify; + apply (. (oa_join_split : ?)); + exists [ apply true ] + apply oa_overlap_sym; + assumption; ] +qed. -======= - [1,2,3,4: apply id1; - |5,6,7:intros; apply refl1;] -| apply composition; -| intros; repeat split; unfold composition; simplify; - [1,3: apply (comp_assoc1); | 2,4: apply ((comp_assoc1 ????????) \sup -1);] -| intros; repeat split; unfold composition; simplify; apply id_neutral_left1; -| intros; repeat split; unfold composition; simplify; apply id_neutral_right1;] -qed.>>>>>>> .r9407 +(* Part of proposition 9.9 *) +lemma f_minus_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻ p ≤ R⎻ q. + intros; + apply (. (or_prop2 : ?)); + apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop2 : ?)^ -1); apply oa_leq_refl;] +qed. + +(* Part of proposition 9.9 *) +lemma f_minus_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻* p ≤ R⎻* q. + intros; + apply (. (or_prop2 : ?)^ -1); + apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop2 : ?)); apply oa_leq_refl;] +qed. + +(* Part of proposition 9.9 *) +lemma f_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R p ≤ R q. + intros; + apply (. (or_prop1 : ?)); + apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop1 : ?)^ -1); apply oa_leq_refl;] +qed. + +(* Part of proposition 9.9 *) +lemma f_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R* p ≤ R* q. + intros; + apply (. (or_prop1 : ?)^ -1); + apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop1 : ?)); apply oa_leq_refl;] +qed. + +lemma lemma_10_2_a: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R⎻* (R⎻ p). + intros; + apply (. (or_prop2 : ?)^-1); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_b: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* p) ≤ p. + intros; + apply (. (or_prop2 : ?)); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_c: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R* (R p). + intros; + apply (. (or_prop1 : ?)^-1); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_d: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* p) ≤ p. + intros; + apply (. (or_prop1 : ?)); + apply oa_leq_refl. +qed. + +lemma lemma_10_3_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p. + intros; apply oa_leq_antisym; + [ apply lemma_10_2_b; + | apply f_minus_image_monotone; + apply lemma_10_2_a; ] +qed. + +lemma lemma_10_3_b: ∀S,T.∀R:arrows2 OA S T.∀p. R* (R (R* p)) = R* p. + intros; apply oa_leq_antisym; + [ apply f_star_image_monotone; + apply (lemma_10_2_d ?? R p); + | apply lemma_10_2_c; ] +qed. + +lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p. + intros; apply oa_leq_antisym; + [ apply lemma_10_2_d; + | apply f_image_monotone; + apply (lemma_10_2_c ?? R p); ] +qed. + +lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p. + intros; apply oa_leq_antisym; + [ apply f_minus_star_image_monotone; + apply (lemma_10_2_b ?? R p); + | apply lemma_10_2_a; ] +qed. + +lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p). + intros; apply (†(lemma_10_3_a ?? R p)); +qed. + +lemma lemma_10_4_b: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R (R* p))) = R (R* p). +intros; unfold in ⊢ (? ? ? % %); apply (†(lemma_10_3_b ?? R p)); +qed. + +lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U). + intros; split; intro; apply oa_overlap_sym; assumption. +qed. \ No newline at end of file