X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-algebra.ma;h=806859a45dd0ae4e3d70d265843b9a54bdeaf0a4;hb=e78cf74f8976cf0ca554f64baa9979d0423ee927;hp=b5410f7aff9876888d8d5b4b07c8d8311991adb6;hpb=4dfb1305a9c4a7c292f4b1957de1454d46c1ab8a;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index b5410f7af..806859a45 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -12,169 +12,433 @@ (* *) (**************************************************************************) -include "datatypes/categories.ma". -include "logic/cprop_connectives.ma". +include "categories.ma". -inductive bool : Type := true : bool | false : bool. +inductive bool : Type0 := true : bool | false : bool. -lemma ums : setoid → setoid → setoid. -intros (S T); -constructor 1; -[ apply (unary_morphism S T); -| constructor 1; - [ intros (f1 f2); apply (∀a,b:S.eq1 ? a b → eq1 ? (f1 a) (f2 b)); - | whd; simplify; intros; apply (.= (†H)); apply refl1; - | whd; simplify; intros; apply (.= (†H1)); apply sym1; apply H; apply refl1; - | whd; simplify; intros; apply (.= (†H2)); apply (.= (H ?? #)); apply (.= (H1 ?? #)); apply rule #;]] -qed. - -lemma BOOL : setoid. +lemma BOOL : objs1 SET. constructor 1; [apply bool] constructor 1; [ intros (x y); apply (match x with [ true ⇒ match y with [ true ⇒ True | _ ⇒ False] | false ⇒ match y with [ true ⇒ False | false ⇒ True ]]); | whd; simplify; intros; cases x; apply I; | whd; simplify; intros 2; cases x; cases y; simplify; intros; assumption; -| whd; simplify; intros 3; cases x; cases y; cases z; simplify; intros; try assumption; apply I] +| whd; simplify; intros 3; cases x; cases y; cases z; simplify; intros; + try assumption; apply I] qed. lemma IF_THEN_ELSE_p : - ∀S:setoid.∀a,b:S.∀x,y:BOOL.x = y → - let f ≝ λm.match m with [ true ⇒ a | false ⇒ b ] in f x = f y. -intros; cases x in H; cases y; simplify; intros; try apply refl; whd in H; cases H; -qed. - -lemma if_then_else : ∀T:setoid. ∀a,b:T. ums BOOL T. -intros; constructor 1; intros; -[ apply (match c2 with [ true ⇒ c | false ⇒ c1 ]); -| apply (IF_THEN_ELSE_p T c c1 a a' H);] + ∀S:setoid1.∀a,b:S.∀x,y:BOOL.x = y → + (λm.match m with [ true ⇒ a | false ⇒ b ]) x = + (λm.match m with [ true ⇒ a | false ⇒ b ]) y. +whd in ⊢ (?→?→?→%→?); +intros; cases x in e; cases y; simplify; intros; try apply refl1; whd in e; cases e; qed. -record OAlgebra : Type := { - oa_P :> setoid; - oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1 *) +interpretation "unary morphism comprehension with no proof" 'comprehension T P = + (mk_unary_morphism T ? P ?). +interpretation "unary morphism1 comprehension with no proof" 'comprehension T P = + (mk_unary_morphism1 T ? P ?). + +notation > "hvbox({ ident i ∈ s | term 19 p | by })" with precedence 90 +for @{ 'comprehension_by $s (λ${ident i}. $p) $by}. +notation < "hvbox({ ident i ∈ s | term 19 p })" with precedence 90 +for @{ 'comprehension_by $s (λ${ident i}:$_. $p) $by}. + +interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p = + (mk_unary_morphism s ? f p). +interpretation "unary morphism1 comprehension with proof" 'comprehension_by s \eta.f p = + (mk_unary_morphism1 s ? f p). + +(* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete + lattices, Definizione 0.9 *) +(* USARE L'ESISTENZIALE DEBOLE *) +record OAlgebra : Type2 := { + oa_P :> SET1; + oa_leq : binary_morphism1 oa_P oa_P CPROP; oa_overlap: binary_morphism1 oa_P oa_P CPROP; - oa_meet: ∀I:setoid.unary_morphism (ums I oa_P) oa_P; - oa_join: ∀I:setoid.unary_morphism (ums I oa_P) oa_P; + oa_meet: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; + oa_join: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; oa_one: oa_P; oa_zero: oa_P; oa_leq_refl: ∀a:oa_P. oa_leq a a; oa_leq_antisym: ∀a,b:oa_P.oa_leq a b → oa_leq b a → a = b; oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c; oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a; - oa_meet_inf: ∀I.∀p_i.∀p:oa_P.oa_leq p (oa_meet I p_i) → ∀i:I.oa_leq p (p_i i); - oa_join_sup: ∀I.∀p_i.∀p:oa_P.oa_leq (oa_join I p_i) p → ∀i:I.oa_leq (p_i i) p; + oa_meet_inf: + ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P. + oa_leq p (oa_meet I p_i) = (∀i:I.oa_leq p (p_i i)); + oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = (∀i:I.oa_leq (p_i i) p); oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p; oa_one_top: ∀p:oa_P.oa_leq p oa_one; - oa_overlap_preservers_meet: - ∀p,q.oa_overlap p q → oa_overlap p - (oa_meet BOOL (if_then_else oa_P p q)); - oa_join_split: (* ha I → oa_P da castare a funX (ums A oa_P) *) - ∀I:setoid.∀p.∀q:ums I oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); + oa_overlap_preserves_meet_: + ∀p,q:oa_P.oa_overlap p q → oa_overlap p + (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q }); + oa_join_split: + ∀I:SET.∀p.∀q:I ⇒ oa_P. + oa_overlap p (oa_join I q) = (∃i:I.oa_overlap p (q i)); (*oa_base : setoid; + 1) enum non e' il nome giusto perche' non e' suriettiva + 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base oa_enum : ums oa_base oa_P; - oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q*) + oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q + *) oa_density: ∀p,q.(∀r.oa_overlap p r → oa_overlap q r) → oa_leq p q }. -interpretation "o-algebra leq" 'leq a b = (fun1 ___ (oa_leq _) a b). +interpretation "o-algebra leq" 'leq a b = (fun21 ??? (oa_leq ?) a b). notation "hovbox(a mpadded width -150% (>)< b)" non associative with precedence 45 for @{ 'overlap $a $b}. -interpretation "o-algebra overlap" 'overlap a b = (fun1 ___ (oa_overlap _) a b). +interpretation "o-algebra overlap" 'overlap a b = (fun21 ??? (oa_overlap ?) a b). + +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 50 for @{ 'oa_meet $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 50 for @{ 'oa_meet_mk (λ${ident i}:$I.$p) }. notation > "hovbox(∧ f)" non associative with precedence 60 for @{ 'oa_meet $f }. -notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈  I) break term 90 p)" non associative with precedence 50 -for @{ 'oa_meet (λ${ident i}:$I.$p) }. -notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" non associative with precedence 50 -for @{ 'oa_meet (λ${ident i}.($p $_)) }. -notation < "hovbox(a ∧ b)" left associative with precedence 50 -for @{ 'oa_meet2 $a $b }. +interpretation "o-algebra meet" 'oa_meet f = + (fun12 ?? (oa_meet ??) f). +interpretation "o-algebra meet with explicit function" 'oa_meet_mk f = + (fun12 ?? (oa_meet ??) (mk_unary_morphism ?? f ?)). -interpretation "o-algebra meet" 'oa_meet \eta.f = (fun_1 __ (oa_meet __) f). -interpretation "o-algebra binary meet" 'and x y = (fun_1 __ (oa_meet _ BOOL) (if_then_else _ x y)). +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 50 for @{ 'oa_join $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 50 for @{ 'oa_join_mk (λ${ident i}:$I.$p) }. -(* -notation > "hovbox(a ∨ b)" left associative with precedence 49 -for @{ 'oa_join (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) }. -notation > "hovbox(∨ f)" non associative with precedence 59 +notation > "hovbox(∨ f)" non associative with precedence 60 for @{ 'oa_join $f }. -notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" non associative with precedence 49 -for @{ 'oa_join (λ${ident i}:$I.$p) }. -notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" non associative with precedence 49 -for @{ 'oa_join (λ${ident i}.($p $_)) }. +interpretation "o-algebra join" 'oa_join f = + (fun12 ?? (oa_join ??) f). +interpretation "o-algebra join with explicit function" 'oa_join_mk f = + (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). + +definition binary_meet : ∀O:OAlgebra. binary_morphism1 O O O. +intros; split; +[ intros (p q); + apply (∧ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); +| intros; lapply (prop12 ? O (oa_meet O BOOL)); + [2: apply ({ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b ] | IF_THEN_ELSE_p ? a b }); + |3: apply ({ x ∈ BOOL | match x with [ true ⇒ a' | false ⇒ b' ] | IF_THEN_ELSE_p ? a' b' }); + | apply Hletin;] + intro x; simplify; cases x; simplify; assumption;] +qed. + +interpretation "o-algebra binary meet" 'and a b = + (fun21 ??? (binary_meet ?) a b). + +prefer coercion Type1_OF_OAlgebra. + +definition binary_join : ∀O:OAlgebra. binary_morphism1 O O O. +intros; split; +[ intros (p q); + apply (∨ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); +| intros; lapply (prop12 ? O (oa_join O BOOL)); + [2: apply ({ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b ] | IF_THEN_ELSE_p ? a b }); + |3: apply ({ x ∈ BOOL | match x with [ true ⇒ a' | false ⇒ b' ] | IF_THEN_ELSE_p ? a' b' }); + | apply Hletin;] + intro x; simplify; cases x; simplify; assumption;] +qed. + +interpretation "o-algebra binary join" 'or a b = + (fun21 ??? (binary_join ?) a b). + +lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q). +(* next change to avoid universe inconsistency *) +change in ⊢ (?→%→%→?) with (Type1_OF_OAlgebra O); +intros; lapply (oa_overlap_preserves_meet_ O p q f); +lapply (prop21 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); +[3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1; +qed. + +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 49 for @{ 'oa_join $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 49 for @{ 'oa_join_mk (λ${ident i}:$I.$p) }. notation < "hovbox(a ∨ b)" left associative with precedence 49 -for @{ 'oa_join (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. - -interpretation "o-algebra join" 'oa_join \eta.f = (oa_join _ _ f). -*) - -record ORelation (P,Q : OAlgebra) : Type ≝ { - or_f :> P ⇒ Q; - or_f_minus_star : P ⇒ Q; - or_f_star : Q ⇒ P; - or_f_minus : Q ⇒ P; - or_prop1 : ∀p,q. or_f p ≤ q ⇔ p ≤ or_f_star q; - or_prop2 : ∀p,q. or_f_minus p ≤ q ⇔ p ≤ or_f_minus_star q; - or_prop3 : ∀p,q. or_f p >< q ⇔ p >< or_f_minus q +for @{ 'oa_join_mk (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. + +notation > "hovbox(∨ f)" non associative with precedence 59 +for @{ 'oa_join $f }. +notation > "hovbox(a ∨ b)" left associative with precedence 49 +for @{ 'oa_join (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. + +interpretation "o-algebra join" 'oa_join f = + (fun12 ?? (oa_join ??) f). +interpretation "o-algebra join with explicit function" 'oa_join_mk f = + (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). + +record ORelation (P,Q : OAlgebra) : Type2 ≝ { + or_f_ : carr2 (P ⇒ Q); + or_f_minus_star_ : carr2(P ⇒ Q); + or_f_star_ : carr2(Q ⇒ P); + or_f_minus_ : carr2(Q ⇒ P); + or_prop1_ : ∀p,q. (or_f_ p ≤ q) = (p ≤ or_f_star_ q); + or_prop2_ : ∀p,q. (or_f_minus_ p ≤ q) = (p ≤ or_f_minus_star_ q); + or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q) }. +definition ORelation_setoid : OAlgebra → OAlgebra → setoid2. +intros (P Q); +constructor 1; +[ apply (ORelation P Q); +| constructor 1; + (* tenere solo una uguaglianza e usare la proposizione 9.9 per + le altre (unicita' degli aggiunti e del simmetrico) *) + [ apply (λp,q. And42 + (or_f_minus_star_ ?? p = or_f_minus_star_ ?? q) + (or_f_minus_ ?? p = or_f_minus_ ?? q) + (or_f_ ?? p = or_f_ ?? q) + (or_f_star_ ?? p = or_f_star_ ?? q)); + | whd; simplify; intros; repeat split; intros; apply refl2; + | whd; simplify; intros; cases a; clear a; split; + intro a; apply sym1; generalize in match a;assumption; + | whd; simplify; intros; cases a; cases a1; clear a a1; split; intro a; + [ apply (.= (e a)); apply e4; + | apply (.= (e1 a)); apply e5; + | apply (.= (e2 a)); apply e6; + | apply (.= (e3 a)); apply e7;]]] +qed. + +definition ORelation_of_ORelation_setoid : + ∀P,Q.ORelation_setoid P Q → ORelation P Q ≝ λP,Q,x.x. +coercion ORelation_of_ORelation_setoid. + +definition or_f_minus_star: + ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). + intros; constructor 1; + [ apply or_f_minus_star_; + | intros; cases e; assumption] +qed. + +definition or_f: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). + intros; constructor 1; + [ apply or_f_; + | intros; cases e; assumption] +qed. + +definition or_f_minus: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). + intros; constructor 1; + [ apply or_f_minus_; + | intros; cases e; assumption] +qed. + +definition or_f_star: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). + intros; constructor 1; + [ apply or_f_star_; + | intros; cases e; assumption] +qed. + +lemma arrows1_of_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒ Q). +intros; apply (or_f ?? c); +qed. +coercion arrows1_of_ORelation_setoid. + notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. -interpretation "o-relation f*" 'OR_f_star r = (or_f_star _ _ r). notation "r \sup (⎻* )" non associative with precedence 90 for @{'OR_f_minus_star $r}. notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r}. -interpretation "o-relation f⎻*" 'OR_f_minus_star r = (or_f_minus_star _ _ r). notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}. -interpretation "o-relation f⎻" 'OR_f_minus r = (or_f_minus _ _ r). -axiom DAEMON: False. +interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun12 ?? (or_f_minus_star ? ?) r). +interpretation "o-relation f⎻" 'OR_f_minus r = (fun12 ?? (or_f_minus ? ?) r). +interpretation "o-relation f*" 'OR_f_star r = (fun12 ?? (or_f_star ? ?) r). -definition ORelation_setoid : OAlgebra → OAlgebra → setoid1. -intros (P Q); -constructor 1; -[ apply (ORelation P Q); -| constructor 1; - [ - alias symbol "and" = "constructive and". - apply (λp,q. - (∀a.p⎻* a = q⎻* a) ∧ - (∀a.p⎻ a = q⎻ a) ∧ - (∀a.p a = q a) ∧ - (∀a.p* a = q* a)); - | whd; simplify; intros; repeat split; intros; apply refl; - | whd; simplify; intros; cases H; cases H1; cases H3; clear H H3 H1; - repeat split; intros; apply sym; generalize in match a;assumption; - | whd; simplify; intros; elim DAEMON;]] -qed. - -lemma hint : ∀P,Q. ORelation_setoid P Q → P ⇒ Q. intros; apply (or_f ?? c);qed. -coercion hint. - -definition composition : ∀P,Q,R. - binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). +definition or_prop1 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. + (F p ≤ q) = (p ≤ F* q). +intros; apply (or_prop1_ ?? F p q); +qed. + +definition or_prop2 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. + (F⎻ p ≤ q) = (p ≤ F⎻* q). +intros; apply (or_prop2_ ?? F p q); +qed. + +definition or_prop3 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. + (F p >< q) = (p >< F⎻ q). +intros; apply (or_prop3_ ?? F p q); +qed. + +definition ORelation_composition : ∀P,Q,R. + binary_morphism2 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). intros; constructor 1; [ intros (F G); constructor 1; - [ constructor 1; [apply (λx. G (F x)); | intros; apply (†(†H));] - |2,3,4,5,6,7: cases DAEMON;] -| intros; cases DAEMON;] + [ apply (G ∘ F); + | apply rule (G⎻* ∘ F⎻* ); + | apply (F* ∘ G* ); + | apply (F⎻ ∘ G⎻); + | intros; + change with ((G (F p) ≤ q) = (p ≤ (F* (G* q)))); + apply (.= (or_prop1 :?)); + apply (or_prop1 :?); + | intros; + change with ((F⎻ (G⎻ p) ≤ q) = (p ≤ (G⎻* (F⎻* q)))); + apply (.= (or_prop2 :?)); + apply or_prop2 ; + | intros; change with ((G (F (p)) >< q) = (p >< (F⎻ (G⎻ q)))); + apply (.= (or_prop3 :?)); + apply or_prop3; + ] +| intros; split; simplify; + [3: unfold arrows1_of_ORelation_setoid; apply ((†e)‡(†e1)); + |1: apply ((†e)‡(†e1)); + |2,4: apply ((†e1)‡(†e));]] qed. -definition OA : category1. (* category2 *) +definition OA : category2. split; [ apply (OAlgebra); | intros; apply (ORelation_setoid o o1); | intro O; split; - [1,2,3,4: constructor 1; [1,3,5,7:apply (λx.x);|*:intros;assumption] - |5,6,7:intros;split;intros; assumption; ] -|4: apply composition; -|*: elim DAEMON;] -qed. + [1,2,3,4: apply id2; + |5,6,7:intros; apply refl1;] +| apply ORelation_composition; +| intros (P Q R S F G H); split; + [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); + apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); + | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); + | apply ((comp_assoc2 ????? F G H)^-1); + | apply ((comp_assoc2 ????? H* G* F* ));] +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] +qed. + +definition OAlgebra_of_objs2_OA: objs2 OA → OAlgebra ≝ λx.x. +coercion OAlgebra_of_objs2_OA. + +definition ORelation_setoid_of_arrows2_OA: + ∀P,Q. arrows2 OA P Q → ORelation_setoid P Q ≝ λP,Q,c.c. +coercion ORelation_setoid_of_arrows2_OA. + +prefer coercion Type_OF_objs2. + +(* alias symbol "eq" = "setoid1 eq". *) + +(* qui la notazione non va *) +lemma leq_to_eq_join: ∀S:OA.∀p,q:S. p ≤ q → q = (binary_join ? p q). + intros; + apply oa_leq_antisym; + [ apply oa_density; intros; + apply oa_overlap_sym; + unfold binary_join; simplify; + apply (. (oa_join_split : ?)); + exists; [ apply false ] + apply oa_overlap_sym; + assumption + | unfold binary_join; simplify; + apply (. (oa_join_sup : ?)); intro; + cases i; whd in ⊢ (? ? ? ? ? % ?); + [ assumption | apply oa_leq_refl ]] +qed. + +lemma overlap_monotone_left: ∀S:OA.∀p,q,r:S. p ≤ q → p >< r → q >< r. + intros; + apply (. (leq_to_eq_join : ?)‡#); + [ apply f; + | skip + | apply oa_overlap_sym; + unfold binary_join; simplify; + apply (. (oa_join_split : ?)); + exists [ apply true ] + apply oa_overlap_sym; + assumption; ] +qed. + +(* Part of proposition 9.9 *) +lemma f_minus_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻ p ≤ R⎻ q. + intros; + apply (. (or_prop2 : ?)); + apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop2 : ?)^ -1); apply oa_leq_refl;] +qed. + +(* Part of proposition 9.9 *) +lemma f_minus_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻* p ≤ R⎻* q. + intros; + apply (. (or_prop2 : ?)^ -1); + apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop2 : ?)); apply oa_leq_refl;] +qed. +(* Part of proposition 9.9 *) +lemma f_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R p ≤ R q. + intros; + apply (. (or_prop1 : ?)); + apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop1 : ?)^ -1); apply oa_leq_refl;] +qed. + +(* Part of proposition 9.9 *) +lemma f_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R* p ≤ R* q. + intros; + apply (. (or_prop1 : ?)^ -1); + apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop1 : ?)); apply oa_leq_refl;] +qed. + +lemma lemma_10_2_a: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R⎻* (R⎻ p). + intros; + apply (. (or_prop2 : ?)^-1); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_b: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* p) ≤ p. + intros; + apply (. (or_prop2 : ?)); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_c: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R* (R p). + intros; + apply (. (or_prop1 : ?)^-1); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_d: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* p) ≤ p. + intros; + apply (. (or_prop1 : ?)); + apply oa_leq_refl. +qed. +lemma lemma_10_3_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p. + intros; apply oa_leq_antisym; + [ apply lemma_10_2_b; + | apply f_minus_image_monotone; + apply lemma_10_2_a; ] +qed. + +lemma lemma_10_3_b: ∀S,T.∀R:arrows2 OA S T.∀p. R* (R (R* p)) = R* p. + intros; apply oa_leq_antisym; + [ apply f_star_image_monotone; + apply (lemma_10_2_d ?? R p); + | apply lemma_10_2_c; ] +qed. + +lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p. + intros; apply oa_leq_antisym; + [ apply lemma_10_2_d; + | apply f_image_monotone; + apply (lemma_10_2_c ?? R p); ] +qed. + +lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p. + intros; apply oa_leq_antisym; + [ apply f_minus_star_image_monotone; + apply (lemma_10_2_b ?? R p); + | apply lemma_10_2_a; ] +qed. + +lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p). + intros; apply (†(lemma_10_3_a ?? R p)); +qed. + +lemma lemma_10_4_b: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R (R* p))) = R (R* p). +intros; unfold in ⊢ (? ? ? % %); apply (†(lemma_10_3_b ?? R p)); +qed. +lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U). + intros; split; intro; apply oa_overlap_sym; assumption. +qed. \ No newline at end of file