X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-algebra.ma;h=838876f93f8bef90fbe7aeb0139566863d6e1a6e;hb=7db606e36d5c17681a62cf5186bafde65cbfa3db;hp=0cb3fe1172a341f7ac5fe1ba53530c7d5d13adff;hpb=f1889c6a0850d2691190d34159d5eb9bb9c76f77;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index 0cb3fe117..838876f93 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -12,10 +12,9 @@ (* *) (**************************************************************************) -include "datatypes/categories.ma". -include "logic/cprop_connectives.ma". +include "categories.ma". -inductive bool : Type := true : bool | false : bool. +inductive bool : Type0 := true : bool | false : bool. lemma BOOL : objs1 SET. constructor 1; [apply bool] constructor 1; @@ -27,15 +26,17 @@ constructor 1; [apply bool] constructor 1; qed. lemma IF_THEN_ELSE_p : - ∀S:setoid.∀a,b:S.∀x,y:BOOL.x = y → + ∀S:setoid1.∀a,b:S.∀x,y:BOOL.x = y → (λm.match m with [ true ⇒ a | false ⇒ b ]) x = (λm.match m with [ true ⇒ a | false ⇒ b ]) y. whd in ⊢ (?→?→?→%→?); -intros; cases x in H; cases y; simplify; intros; try apply refl; whd in H; cases H; -qed. +intros; cases x in e; cases y; simplify; intros; try apply refl1; whd in e; cases e; +qed. interpretation "unary morphism comprehension with no proof" 'comprehension T P = (mk_unary_morphism T _ P _). +interpretation "unary morphism1 comprehension with no proof" 'comprehension T P = + (mk_unary_morphism1 T _ P _). notation > "hvbox({ ident i ∈ s | term 19 p | by })" with precedence 90 for @{ 'comprehension_by $s (λ${ident i}. $p) $by}. @@ -44,29 +45,37 @@ for @{ 'comprehension_by $s (λ${ident i}:$_. $p) $by}. interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p = (mk_unary_morphism s _ f p). - -record OAlgebra : Type := { - oa_P :> SET; - oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1 *) +interpretation "unary morphism1 comprehension with proof" 'comprehension_by s \eta.f p = + (mk_unary_morphism1 s _ f p). + +(* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete + lattices, Definizione 0.9 *) +(* USARE L'ESISTENZIALE DEBOLE *) +record OAlgebra : Type2 := { + oa_P :> SET1; + oa_leq : binary_morphism1 oa_P oa_P CPROP; oa_overlap: binary_morphism1 oa_P oa_P CPROP; - oa_meet: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P; - oa_join: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P; + oa_meet: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; + oa_join: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; oa_one: oa_P; oa_zero: oa_P; oa_leq_refl: ∀a:oa_P. oa_leq a a; oa_leq_antisym: ∀a,b:oa_P.oa_leq a b → oa_leq b a → a = b; oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c; oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a; - oa_meet_inf: ∀I.∀p_i.∀p:oa_P.oa_leq p (oa_meet I p_i) → ∀i:I.oa_leq p (p_i i); - oa_join_sup: ∀I.∀p_i.∀p:oa_P.oa_leq (oa_join I p_i) p → ∀i:I.oa_leq (p_i i) p; + oa_meet_inf: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq p (oa_meet I p_i) = ∀i:I.oa_leq p (p_i i); + oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = ∀i:I.oa_leq (p_i i) p; oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p; oa_one_top: ∀p:oa_P.oa_leq p oa_one; - oa_overlap_preservers_meet_: - ∀p,q.oa_overlap p q → oa_overlap p + oa_overlap_preserves_meet_: + ∀p,q:oa_P.oa_overlap p q → oa_overlap p (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q }); oa_join_split: - ∀I:SET.∀p.∀q:arrows1 SET I oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); + ∀I:SET.∀p.∀q:I ⇒ oa_P. + oa_overlap p (oa_join I q) = ∃i:I.oa_overlap p (q i); (*oa_base : setoid; + 1) enum non e' il nome giusto perche' non e' suriettiva + 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base oa_enum : ums oa_base oa_P; oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q *) @@ -74,48 +83,55 @@ record OAlgebra : Type := { ∀p,q.(∀r.oa_overlap p r → oa_overlap q r) → oa_leq p q }. -interpretation "o-algebra leq" 'leq a b = (fun1 ___ (oa_leq _) a b). +interpretation "o-algebra leq" 'leq a b = (fun21 ___ (oa_leq _) a b). notation "hovbox(a mpadded width -150% (>)< b)" non associative with precedence 45 for @{ 'overlap $a $b}. -interpretation "o-algebra overlap" 'overlap a b = (fun1 ___ (oa_overlap _) a b). +interpretation "o-algebra overlap" 'overlap a b = (fun21 ___ (oa_overlap _) a b). notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" non associative with precedence 50 for @{ 'oa_meet $p }. notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈  I) break term 90 p)" non associative with precedence 50 for @{ 'oa_meet_mk (λ${ident i}:$I.$p) }. -(* -notation < "hovbox(a ∧ b)" left associative with precedence 35 -for @{ 'oa_meet_mk (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. -*) notation > "hovbox(∧ f)" non associative with precedence 60 for @{ 'oa_meet $f }. -(* -notation > "hovbox(a ∧ b)" left associative with precedence 50 -for @{ 'oa_meet (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. -*) interpretation "o-algebra meet" 'oa_meet f = - (fun_1 __ (oa_meet __) f). + (fun12 __ (oa_meet __) f). interpretation "o-algebra meet with explicit function" 'oa_meet_mk f = - (fun_1 __ (oa_meet __) (mk_unary_morphism _ _ f _)). + (fun12 __ (oa_meet __) (mk_unary_morphism _ _ f _)). + +definition hint3: OAlgebra → setoid1. + intro; apply (oa_P o); +qed. +coercion hint3. + +definition hint4: ∀A. setoid2_OF_OAlgebra A → hint3 A. + intros; apply t; +qed. +coercion hint4. definition binary_meet : ∀O:OAlgebra. binary_morphism1 O O O. intros; split; [ intros (p q); apply (∧ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); -| intros; apply (prop_1 ?? (oa_meet O BOOL)); intro x; simplify; - cases x; simplify; assumption;] +| intros; lapply (prop12 ? O (oa_meet O BOOL)); + [2: apply ({ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b ] | IF_THEN_ELSE_p ? a b }); + |3: apply ({ x ∈ BOOL | match x with [ true ⇒ a' | false ⇒ b' ] | IF_THEN_ELSE_p ? a' b' }); + | apply Hletin;] + intro x; simplify; cases x; simplify; assumption;] qed. -notation "hovbox(a ∧ b)" left associative with precedence 35 -for @{ 'oa_meet_bin $a $b }. -interpretation "o-algebra binary meet" 'oa_meet_bin a b = - (fun1 ___ (binary_meet _) a b). +interpretation "o-algebra binary meet" 'and a b = + (fun21 ___ (binary_meet _) a b). + +coercion Type1_OF_OAlgebra nocomposites. lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q). -intros; lapply (oa_overlap_preservers_meet_ O p q f); -lapply (prop1 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); +(* next change to avoid universe inconsistency *) +change in ⊢ (?→%→%→?) with (Type1_OF_OAlgebra O); +intros; lapply (oa_overlap_preserves_meet_ O p q f); +lapply (prop21 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); [3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1; qed. @@ -132,93 +148,101 @@ notation > "hovbox(a ∨ b)" left associative with precedence 49 for @{ 'oa_join (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. interpretation "o-algebra join" 'oa_join f = - (fun_1 __ (oa_join __) f). + (fun12 __ (oa_join __) f). interpretation "o-algebra join with explicit function" 'oa_join_mk f = - (fun_1 __ (oa_join __) (mk_unary_morphism _ _ f _)). + (fun12 __ (oa_join __) (mk_unary_morphism _ _ f _)). -record ORelation (P,Q : OAlgebra) : Type ≝ { - or_f_ : arrows1 SET P Q; - or_f_minus_star_ : arrows1 SET P Q; - or_f_star_ : arrows1 SET Q P; - or_f_minus_ : arrows1 SET Q P; +definition hint5: OAlgebra → objs2 SET1. + intro; apply (oa_P o); +qed. +coercion hint5. + +record ORelation (P,Q : OAlgebra) : Type2 ≝ { + or_f_ : P ⇒ Q; + or_f_minus_star_ : P ⇒ Q; + or_f_star_ : Q ⇒ P; + or_f_minus_ : Q ⇒ P; or_prop1_ : ∀p,q. (or_f_ p ≤ q) = (p ≤ or_f_star_ q); or_prop2_ : ∀p,q. (or_f_minus_ p ≤ q) = (p ≤ or_f_minus_star_ q); or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q) }. - -definition ORelation_setoid : OAlgebra → OAlgebra → setoid1. +definition ORelation_setoid : OAlgebra → OAlgebra → setoid2. intros (P Q); constructor 1; [ apply (ORelation P Q); | constructor 1; - [ apply (λp,q. And4 (eq1 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q)) - (eq1 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q)) - (eq1 ? (or_f_ ?? p) (or_f_ ?? q)) - (eq1 ? (or_f_star_ ?? p) (or_f_star_ ?? q))); - | whd; simplify; intros; repeat split; intros; apply refl1; - | whd; simplify; intros; cases H; clear H; split; - intro a; apply sym; generalize in match a;assumption; - | whd; simplify; intros; cases H; cases H1; clear H H1; split; intro a; - [ apply (.= (H2 a)); apply H6; - | apply (.= (H3 a)); apply H7; - | apply (.= (H4 a)); apply H8; - | apply (.= (H5 a)); apply H9;]]] -qed. - -definition or_f_minus_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q. + (* tenere solo una uguaglianza e usare la proposizione 9.9 per + le altre (unicita' degli aggiunti e del simmetrico) *) + [ apply (λp,q. And42 (eq2 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q)) + (eq2 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q)) + (eq2 ? (or_f_ ?? p) (or_f_ ?? q)) + (eq2 ? (or_f_star_ ?? p) (or_f_star_ ?? q))); + | whd; simplify; intros; repeat split; intros; apply refl2; + | whd; simplify; intros; cases a; clear a; split; + intro a; apply sym1; generalize in match a;assumption; + | whd; simplify; intros; cases a; cases a1; clear a a1; split; intro a; + [ apply (.= (e a)); apply e4; + | apply (.= (e1 a)); apply e5; + | apply (.= (e2 a)); apply e6; + | apply (.= (e3 a)); apply e7;]]] +qed. + +definition or_f_minus_star: + ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). intros; constructor 1; [ apply or_f_minus_star_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. -definition or_f: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q. +definition or_f: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). intros; constructor 1; [ apply or_f_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. coercion or_f. -definition or_f_minus: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P. +definition or_f_minus: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). intros; constructor 1; [ apply or_f_minus_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. -definition or_f_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P. +definition or_f_star: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). intros; constructor 1; [ apply or_f_star_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. -lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q. -intros; apply (or_f ?? c); +lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒ Q). +intros; apply (or_f ?? t); qed. -coercion arrows1_OF_ORelation_setoid nocomposites. +coercion arrows1_OF_ORelation_setoid. -lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → P ⇒ Q. -intros; apply (or_f ?? c); +lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → unary_morphism1 P Q. +intros; apply (or_f ?? t); qed. coercion umorphism_OF_ORelation_setoid. - -lemma uncurry_arrows : ∀B,C. arrows1 SET B C → B → C. -intros; apply ((fun_1 ?? c) t); +lemma umorphism_setoid_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → unary_morphism1_setoid1 P Q. +intros; apply (or_f ?? t); qed. -coercion uncurry_arrows 1. +coercion umorphism_setoid_OF_ORelation_setoid. -lemma hint3 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply c;qed. -coercion hint3 nocomposites. +lemma uncurry_arrows : ∀B,C. ORelation_setoid B C → B → C. +intros; apply ((fun11 ?? t) t1); +qed. -(* -lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed. -coercion hint2 nocomposites. -*) +coercion uncurry_arrows 1. +lemma hint6: ∀P,Q. Type_OF_setoid2 (hint5 P ⇒ hint5 Q) → unary_morphism1 P Q. + intros; apply t; +qed. +coercion hint6. notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. @@ -229,9 +253,9 @@ notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r} notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}. -interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun_1 __ (or_f_minus_star _ _) r). -interpretation "o-relation f⎻" 'OR_f_minus r = (fun_1 __ (or_f_minus _ _) r). -interpretation "o-relation f*" 'OR_f_star r = (fun_1 __ (or_f_star _ _) r). +interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun12 __ (or_f_minus_star _ _) r). +interpretation "o-relation f⎻" 'OR_f_minus r = (fun12 __ (or_f_minus _ _) r). +interpretation "o-relation f*" 'OR_f_star r = (fun12 __ (or_f_star _ _) r). definition or_prop1 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. (F p ≤ q) = (p ≤ F* q). @@ -249,14 +273,13 @@ intros; apply (or_prop3_ ?? F p q); qed. definition ORelation_composition : ∀P,Q,R. - binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). + binary_morphism2 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). intros; constructor 1; [ intros (F G); constructor 1; - [ lapply (G ∘ F); - apply (G ∘ F); - | apply (G⎻* ∘ F⎻* ); + [ apply (G ∘ F); + | apply rule (G⎻* ∘ F⎻* ); | apply (F* ∘ G* ); | apply (F⎻ ∘ G⎻); | intros; @@ -272,24 +295,44 @@ constructor 1; apply or_prop3; ] | intros; split; simplify; - [1,3: unfold arrows1_OF_ORelation_setoid; apply ((†H)‡(†H1)); - |2,4: apply ((†H1)‡(†H));]] + [1,3: unfold umorphism_setoid_OF_ORelation_setoid; unfold arrows1_OF_ORelation_setoid; apply ((†e)‡(†e1)); + |2,4: apply ((†e1)‡(†e));]] qed. -definition OA : category1. +definition OA : category2. split; [ apply (OAlgebra); | intros; apply (ORelation_setoid o o1); | intro O; split; - [1,2,3,4: apply id1; + [1,2,3,4: apply id2; |5,6,7:intros; apply refl1;] | apply ORelation_composition; | intros (P Q R S F G H); split; [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); - apply (comp_assoc1 ????? (F⎻* ) (G⎻* ) (H⎻* )); - | apply ((comp_assoc1 ????? (H⎻) (G⎻) (F⎻))^-1); - | apply ((comp_assoc1 ????? F G H)^-1); - | apply ((comp_assoc1 ????? H* G* F* ));] -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left1; -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right1;] + apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); + | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); + | apply ((comp_assoc2 ????? F G H)^-1); + | apply ((comp_assoc2 ????? H* G* F* ));] +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] +qed. + +lemma setoid1_of_OA: OA → setoid1. + intro; apply (oa_P t); +qed. +coercion setoid1_of_OA. + +lemma SET1_of_OA: OA → SET1. + intro; whd; apply (setoid1_of_OA t); +qed. +coercion SET1_of_OA. + +lemma objs2_SET1_OF_OA: OA → objs2 SET1. + intro; whd; apply (setoid1_of_OA t); +qed. +coercion objs2_SET1_OF_OA. + +lemma Type_OF_category2_OF_SET1_OF_OA: OA → Type_OF_category2 SET1. + intro; apply (oa_P t); qed. +coercion Type_OF_category2_OF_SET1_OF_OA.