X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-algebra.ma;h=915afc26d5229474d1a92f62bf7d2da959b41d6b;hb=95ac064b854f31a49f2f8cd3c4b4f4929dc96fc0;hp=533bff3ddd2e191a8305fe229210261033d29fce;hpb=06585b97fad3158391dbbea1fcad5866f5269eee;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index 533bff3dd..915afc26d 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -13,7 +13,6 @@ (**************************************************************************) include "categories.ma". -include "logic/cprop_connectives.ma". inductive bool : Type0 := true : bool | false : bool. @@ -35,9 +34,9 @@ intros; cases x in e; cases y; simplify; intros; try apply refl1; whd in e; case qed. interpretation "unary morphism comprehension with no proof" 'comprehension T P = - (mk_unary_morphism T _ P _). + (mk_unary_morphism T ? P ?). interpretation "unary morphism1 comprehension with no proof" 'comprehension T P = - (mk_unary_morphism1 T _ P _). + (mk_unary_morphism1 T ? P ?). notation > "hvbox({ ident i ∈ s | term 19 p | by })" with precedence 90 for @{ 'comprehension_by $s (λ${ident i}. $p) $by}. @@ -45,85 +44,86 @@ notation < "hvbox({ ident i ∈ s | term 19 p })" with precedence 90 for @{ 'comprehension_by $s (λ${ident i}:$_. $p) $by}. interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p = - (mk_unary_morphism s _ f p). + (mk_unary_morphism s ? f p). interpretation "unary morphism1 comprehension with proof" 'comprehension_by s \eta.f p = - (mk_unary_morphism1 s _ f p). + (mk_unary_morphism1 s ? f p). (* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete lattices, Definizione 0.9 *) (* USARE L'ESISTENZIALE DEBOLE *) -(*alias symbol "comprehension_by" = "unary morphism comprehension with proof".*) + +definition if_then_else ≝ λT:Type.λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. +notation > "'If' term 19 e 'then' term 19 t 'else' term 90 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +notation < "'If' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +interpretation "Formula if_then_else" 'if_then_else e t f = (if_then_else ? e t f). + +notation > "hvbox(a break ≤ b)" non associative with precedence 45 for @{oa_leq $a $b}. +notation > "a >< b" non associative with precedence 45 for @{oa_overlap $a $b}. +notation > "⋁ p" non associative with precedence 45 for @{oa_join ? $p}. +notation > "⋀ p" non associative with precedence 45 for @{oa_meet ? $p}. +notation > "𝟙" non associative with precedence 90 for @{oa_one}. +notation > "𝟘" non associative with precedence 90 for @{oa_zero}. record OAlgebra : Type2 := { oa_P :> SET1; - oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1, CPROP importante che sia small *) - oa_overlap: binary_morphism1 oa_P oa_P CPROP; - oa_meet: ∀I:SET.unary_morphism2 (arrows2 SET1 I oa_P) oa_P; - oa_join: ∀I:SET.unary_morphism2 (arrows2 SET1 I oa_P) oa_P; + oa_leq : oa_P × oa_P ⇒_1 CPROP; + oa_overlap: oa_P × oa_P ⇒_1 CPROP; + oa_meet: ∀I:SET.(I ⇒_2 oa_P) ⇒_2. oa_P; + oa_join: ∀I:SET.(I ⇒_2 oa_P) ⇒_2. oa_P; oa_one: oa_P; oa_zero: oa_P; - oa_leq_refl: ∀a:oa_P. oa_leq a a; - oa_leq_antisym: ∀a,b:oa_P.oa_leq a b → oa_leq b a → a = b; - oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c; - oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a; - (* Errore: = in oa_meet_inf e oa_join_sup *) - oa_meet_inf: ∀I.∀p_i.∀p:oa_P.oa_leq p (oa_meet I p_i) → ∀i:I.oa_leq p (p_i i); - oa_join_sup: ∀I.∀p_i.∀p:oa_P.oa_leq (oa_join I p_i) p → ∀i:I.oa_leq (p_i i) p; - oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p; - oa_one_top: ∀p:oa_P.oa_leq p oa_one; - oa_overlap_preserves_meet_: - ∀p,q:oa_P.oa_overlap p q → oa_overlap p - (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q }); - (* ⇔ deve essere =, l'esiste debole *) - oa_join_split: - ∀I:SET.∀p.∀q:arrows2 SET1 I oa_P. - oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); + oa_leq_refl: ∀a:oa_P. a ≤ a; + oa_leq_antisym: ∀a,b:oa_P.a ≤ b → b ≤ a → a = b; + oa_leq_trans: ∀a,b,c:oa_P.a ≤ b → b ≤ c → a ≤ c; + oa_overlap_sym: ∀a,b:oa_P.a >< b → b >< a; + oa_meet_inf: ∀I:SET.∀p_i:I ⇒_2 oa_P.∀p:oa_P.p ≤ (⋀ p_i) = (∀i:I.p ≤ (p_i i)); + oa_join_sup: ∀I:SET.∀p_i:I ⇒_2 oa_P.∀p:oa_P.(⋁ p_i) ≤ p = (∀i:I.p_i i ≤ p); + oa_zero_bot: ∀p:oa_P.𝟘 ≤ p; + oa_one_top: ∀p:oa_P.p ≤ 𝟙; + oa_overlap_preserves_meet_: ∀p,q:oa_P.p >< q → + p >< (⋀ { x ∈ BOOL | If x then p else q(*match x with [ true ⇒ p | false ⇒ q ]*) | IF_THEN_ELSE_p oa_P p q }); + oa_join_split: ∀I:SET.∀p.∀q:I ⇒_2 oa_P.p >< (⋁ q) = (∃i:I.p >< (q i)); (*oa_base : setoid; 1) enum non e' il nome giusto perche' non e' suriettiva 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base oa_enum : ums oa_base oa_P; oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q *) - oa_density: - ∀p,q.(∀r.oa_overlap p r → oa_overlap q r) → oa_leq p q + oa_density: ∀p,q.(∀r.p >< r → q >< r) → p ≤ q }. -interpretation "o-algebra leq" 'leq a b = (fun21 ___ (oa_leq _) a b). +notation "hvbox(a break ≤ b)" non associative with precedence 45 for @{ 'leq $a $b }. + +interpretation "o-algebra leq" 'leq a b = (fun21 ??? (oa_leq ?) a b). notation "hovbox(a mpadded width -150% (>)< b)" non associative with precedence 45 for @{ 'overlap $a $b}. -interpretation "o-algebra overlap" 'overlap a b = (fun21 ___ (oa_overlap _) a b). +interpretation "o-algebra overlap" 'overlap a b = (fun21 ??? (oa_overlap ?) a b). notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" non associative with precedence 50 for @{ 'oa_meet $p }. notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈  I) break term 90 p)" non associative with precedence 50 for @{ 'oa_meet_mk (λ${ident i}:$I.$p) }. -(* -notation < "hovbox(a ∧ b)" left associative with precedence 35 -for @{ 'oa_meet_mk (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. -*) notation > "hovbox(∧ f)" non associative with precedence 60 for @{ 'oa_meet $f }. -(* -notation > "hovbox(a ∧ b)" left associative with precedence 50 -for @{ 'oa_meet (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. -*) interpretation "o-algebra meet" 'oa_meet f = - (fun12 __ (oa_meet __) f). + (fun12 ?? (oa_meet ??) f). interpretation "o-algebra meet with explicit function" 'oa_meet_mk f = - (fun12 __ (oa_meet __) (mk_unary_morphism _ _ f _)). + (fun12 ?? (oa_meet ??) (mk_unary_morphism1 ?? f ?)). -definition hint3: OAlgebra → setoid1. - intro; apply (oa_P o); -qed. -coercion hint3. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 50 for @{ 'oa_join $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 50 for @{ 'oa_join_mk (λ${ident i}:$I.$p) }. -definition hint4: ∀A. setoid2_OF_OAlgebra A → hint3 A. - intros; apply t; -qed. -coercion hint4. +notation > "hovbox(∨ f)" non associative with precedence 60 +for @{ 'oa_join $f }. +interpretation "o-algebra join" 'oa_join f = + (fun12 ?? (oa_join ??) f). +interpretation "o-algebra join with explicit function" 'oa_join_mk f = + (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). -definition binary_meet : ∀O:OAlgebra. binary_morphism1 O O O. +definition binary_meet : ∀O:OAlgebra. O × O ⇒_1 O. intros; split; [ intros (p q); apply (∧ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); @@ -134,19 +134,29 @@ intros; split; intro x; simplify; cases x; simplify; assumption;] qed. -notation "hovbox(a ∧ b)" left associative with precedence 35 -for @{ 'oa_meet_bin $a $b }. -interpretation "o-algebra binary meet" 'oa_meet_bin a b = - (fun21 ___ (binary_meet _) a b). +interpretation "o-algebra binary meet" 'and a b = + (fun21 ??? (binary_meet ?) a b). -coercion Type1_OF_OAlgebra nocomposites. +prefer coercion Type1_OF_OAlgebra. + +definition binary_join : ∀O:OAlgebra. O × O ⇒_1 O. +intros; split; +[ intros (p q); + apply (∨ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); +| intros; lapply (prop12 ? O (oa_join O BOOL)); + [2: apply ({ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b ] | IF_THEN_ELSE_p ? a b }); + |3: apply ({ x ∈ BOOL | match x with [ true ⇒ a' | false ⇒ b' ] | IF_THEN_ELSE_p ? a' b' }); + | apply Hletin;] + intro x; simplify; cases x; simplify; assumption;] +qed. + +interpretation "o-algebra binary join" 'or a b = + (fun21 ??? (binary_join ?) a b). lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q). -(* next change to avoid universe inconsistency *) -change in ⊢ (?→%→%→?) with (Type1_OF_OAlgebra O); -intros; lapply (oa_overlap_preserves_meet_ O p q f); -lapply (prop21 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); -[3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1; +intros; lapply (oa_overlap_preserves_meet_ O p q f) as H; clear f; +(** screenshot "screenoa". *) +assumption; qed. notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" @@ -162,20 +172,15 @@ notation > "hovbox(a ∨ b)" left associative with precedence 49 for @{ 'oa_join (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. interpretation "o-algebra join" 'oa_join f = - (fun12 __ (oa_join __) f). + (fun12 ?? (oa_join ??) f). interpretation "o-algebra join with explicit function" 'oa_join_mk f = - (fun12 __ (oa_join __) (mk_unary_morphism _ _ f _)). - -definition hint5: OAlgebra → objs2 SET1. - intro; apply (oa_P o); -qed. -coercion hint5. + (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). -record ORelation (P,Q : OAlgebra) : Type ≝ { - or_f_ : P ⇒ Q; - or_f_minus_star_ : P ⇒ Q; - or_f_star_ : Q ⇒ P; - or_f_minus_ : Q ⇒ P; +record ORelation (P,Q : OAlgebra) : Type2 ≝ { + or_f_ : P ⇒_2 Q; + or_f_minus_star_ : P ⇒_2 Q; + or_f_star_ : Q ⇒_2 P; + or_f_minus_ : Q ⇒_2 P; or_prop1_ : ∀p,q. (or_f_ p ≤ q) = (p ≤ or_f_star_ q); or_prop2_ : ∀p,q. (or_f_minus_ p ≤ q) = (p ≤ or_f_minus_star_ q); or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q) @@ -188,75 +193,53 @@ constructor 1; | constructor 1; (* tenere solo una uguaglianza e usare la proposizione 9.9 per le altre (unicita' degli aggiunti e del simmetrico) *) - [ apply (λp,q. And4 (eq2 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q)) - (eq2 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q)) - (eq2 ? (or_f_ ?? p) (or_f_ ?? q)) - (eq2 ? (or_f_star_ ?? p) (or_f_star_ ?? q))); + [ apply (λp,q. And42 + (or_f_minus_star_ ?? p = or_f_minus_star_ ?? q) + (or_f_minus_ ?? p = or_f_minus_ ?? q) + (or_f_ ?? p = or_f_ ?? q) + (or_f_star_ ?? p = or_f_star_ ?? q)); | whd; simplify; intros; repeat split; intros; apply refl2; - | whd; simplify; intros; cases H; clear H; split; + | whd; simplify; intros; cases a; clear a; split; intro a; apply sym1; generalize in match a;assumption; - | whd; simplify; intros; cases H; cases H1; clear H H1; split; intro a; + | whd; simplify; intros; cases a; cases a1; clear a a1; split; intro a; [ apply (.= (e a)); apply e4; | apply (.= (e1 a)); apply e5; | apply (.= (e2 a)); apply e6; | apply (.= (e3 a)); apply e7;]]] qed. -definition or_f_minus_star: - ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). +definition ORelation_of_ORelation_setoid : + ∀P,Q.ORelation_setoid P Q → ORelation P Q ≝ λP,Q,x.x. +coercion ORelation_of_ORelation_setoid. + +definition or_f_minus_star: ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (P ⇒_2 Q). intros; constructor 1; [ apply or_f_minus_star_; | intros; cases e; assumption] qed. -definition or_f: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). +definition or_f: ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (P ⇒_2 Q). intros; constructor 1; [ apply or_f_; | intros; cases e; assumption] qed. -coercion or_f. - -definition or_f_minus: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). +definition or_f_minus: ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (Q ⇒_2 P). intros; constructor 1; [ apply or_f_minus_; | intros; cases e; assumption] qed. -definition or_f_star: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). +definition or_f_star: ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (Q ⇒_2 P). intros; constructor 1; [ apply or_f_star_; | intros; cases e; assumption] qed. -lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒ Q). -intros; apply (or_f ?? t); -qed. - -coercion arrows1_OF_ORelation_setoid. - -lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → unary_morphism1 P Q. -intros; apply (or_f ?? t); -qed. - -coercion umorphism_OF_ORelation_setoid. - -lemma umorphism_setoid_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → unary_morphism1_setoid1 P Q. -intros; apply (or_f ?? t); -qed. - -coercion umorphism_setoid_OF_ORelation_setoid. - -lemma uncurry_arrows : ∀B,C. ORelation_setoid B C → B → C. -intros; apply ((fun11 ?? t) t1); +lemma arrows1_of_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒_2 Q). +intros; apply (or_f ?? c); qed. - -coercion uncurry_arrows 1. - -lemma hint6: ∀P,Q. Type_OF_setoid2 (hint5 P ⇒ hint5 Q) → unary_morphism1 P Q. - intros; apply t; -qed. -coercion hint6. +coercion arrows1_of_ORelation_setoid. notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. @@ -267,9 +250,9 @@ notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r} notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}. -interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun12 __ (or_f_minus_star _ _) r). -interpretation "o-relation f⎻" 'OR_f_minus r = (fun12 __ (or_f_minus _ _) r). -interpretation "o-relation f*" 'OR_f_star r = (fun12 __ (or_f_star _ _) r). +interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun12 ?? (or_f_minus_star ? ?) r). +interpretation "o-relation f⎻" 'OR_f_minus r = (fun12 ?? (or_f_minus ? ?) r). +interpretation "o-relation f*" 'OR_f_star r = (fun12 ?? (or_f_star ? ?) r). definition or_prop1 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. (F p ≤ q) = (p ≤ F* q). @@ -287,7 +270,7 @@ intros; apply (or_prop3_ ?? F p q); qed. definition ORelation_composition : ∀P,Q,R. - binary_morphism2 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). + (ORelation_setoid P Q) × (ORelation_setoid Q R) ⇒_2 (ORelation_setoid P R). intros; constructor 1; [ intros (F G); @@ -309,7 +292,8 @@ constructor 1; apply or_prop3; ] | intros; split; simplify; - [1,3: unfold umorphism_setoid_OF_ORelation_setoid; unfold arrows1_OF_ORelation_setoid; apply ((†e)‡(†e1)); + [3: unfold arrows1_of_ORelation_setoid; apply ((†e)‡(†e1)); + |1: apply ((†e)‡(†e1)); |2,4: apply ((†e1)‡(†e));]] qed. @@ -331,17 +315,133 @@ split; | intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] qed. -lemma setoid1_of_OA: OA → setoid1. - intro; apply (oa_P t); +definition OAlgebra_of_objs2_OA: objs2 OA → OAlgebra ≝ λx.x. +coercion OAlgebra_of_objs2_OA. + +definition ORelation_setoid_of_arrows2_OA: + ∀P,Q. arrows2 OA P Q → ORelation_setoid P Q ≝ λP,Q,c.c. +coercion ORelation_setoid_of_arrows2_OA. + +prefer coercion Type_OF_objs2. + +(* qui la notazione non va *) +lemma leq_to_eq_join: ∀S:OA.∀p,q:S. p ≤ q → q = (binary_join ? p q). + intros; + apply oa_leq_antisym; + [ apply oa_density; intros; + apply oa_overlap_sym; + unfold binary_join; simplify; + apply (. (oa_join_split : ?)); + exists; [ apply false ] + apply oa_overlap_sym; + assumption + | unfold binary_join; simplify; + apply (. (oa_join_sup : ?)); intro; + cases i; whd in ⊢ (? ? ? ? ? % ?); + [ assumption | apply oa_leq_refl ]] +qed. + +lemma overlap_monotone_left: ∀S:OA.∀p,q,r:S. p ≤ q → p >< r → q >< r. + intros; + apply (. (leq_to_eq_join : ?)‡#); + [ apply f; + | skip + | apply oa_overlap_sym; + unfold binary_join; simplify; + apply (. (oa_join_split : ?)); + exists [ apply true ] + apply oa_overlap_sym; + assumption; ] +qed. + +(* Part of proposition 9.9 *) +lemma f_minus_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻ p ≤ R⎻ q. + intros; + apply (. (or_prop2 : ?)); + apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop2 : ?)^ -1); apply oa_leq_refl;] +qed. + +(* Part of proposition 9.9 *) +lemma f_minus_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻* p ≤ R⎻* q. + intros; + apply (. (or_prop2 : ?)^ -1); + apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop2 : ?)); apply oa_leq_refl;] +qed. + +(* Part of proposition 9.9 *) +lemma f_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R p ≤ R q. + intros; + apply (. (or_prop1 : ?)); + apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop1 : ?)^ -1); apply oa_leq_refl;] +qed. + +(* Part of proposition 9.9 *) +lemma f_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R* p ≤ R* q. + intros; + apply (. (or_prop1 : ?)^ -1); + apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop1 : ?)); apply oa_leq_refl;] +qed. + +lemma lemma_10_2_a: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R⎻* (R⎻ p). + intros; + apply (. (or_prop2 : ?)^-1); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_b: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* p) ≤ p. + intros; + apply (. (or_prop2 : ?)); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_c: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R* (R p). + intros; + apply (. (or_prop1 : ?)^-1); + apply oa_leq_refl. +qed. + +lemma lemma_10_2_d: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* p) ≤ p. + intros; + apply (. (or_prop1 : ?)); + apply oa_leq_refl. +qed. + +lemma lemma_10_3_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p. + intros; apply oa_leq_antisym; + [ apply lemma_10_2_b; + | apply f_minus_image_monotone; + apply lemma_10_2_a; ] +qed. + +lemma lemma_10_3_b: ∀S,T.∀R:arrows2 OA S T.∀p. R* (R (R* p)) = R* p. + intros; apply oa_leq_antisym; + [ apply f_star_image_monotone; + apply (lemma_10_2_d ?? R p); + | apply lemma_10_2_c; ] +qed. + +lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p. + intros; apply oa_leq_antisym; + [ apply lemma_10_2_d; + | apply f_image_monotone; + apply (lemma_10_2_c ?? R p); ] +qed. + +lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p. + intros; apply oa_leq_antisym; + [ apply f_minus_star_image_monotone; + apply (lemma_10_2_b ?? R p); + | apply lemma_10_2_a; ] +qed. + +lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p). + intros; apply (†(lemma_10_3_a ?? R p)); qed. -coercion setoid1_of_OA. -lemma SET1_of_OA: OA → SET1. - intro; whd; apply (setoid1_of_OA t); +lemma lemma_10_4_b: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R (R* p))) = R (R* p). +intros; unfold in ⊢ (? ? ? % %); apply (†(lemma_10_3_b ?? R p)); qed. -coercion SET1_of_OA. -lemma objs2_SET1_OF_OA: OA → objs2 SET1. - intro; whd; apply (setoid1_of_OA t); +lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U). + intros; split; intro; apply oa_overlap_sym; assumption. qed. -coercion objs2_SET1_OF_OA.