X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-algebra.ma;h=915afc26d5229474d1a92f62bf7d2da959b41d6b;hb=95ac064b854f31a49f2f8cd3c4b4f4929dc96fc0;hp=806859a45dd0ae4e3d70d265843b9a54bdeaf0a4;hpb=e78cf74f8976cf0ca554f64baa9979d0423ee927;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index 806859a45..915afc26d 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -51,40 +51,48 @@ interpretation "unary morphism1 comprehension with proof" 'comprehension_by s \e (* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete lattices, Definizione 0.9 *) (* USARE L'ESISTENZIALE DEBOLE *) + +definition if_then_else ≝ λT:Type.λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. +notation > "'If' term 19 e 'then' term 19 t 'else' term 90 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +notation < "'If' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +interpretation "Formula if_then_else" 'if_then_else e t f = (if_then_else ? e t f). + +notation > "hvbox(a break ≤ b)" non associative with precedence 45 for @{oa_leq $a $b}. +notation > "a >< b" non associative with precedence 45 for @{oa_overlap $a $b}. +notation > "⋁ p" non associative with precedence 45 for @{oa_join ? $p}. +notation > "⋀ p" non associative with precedence 45 for @{oa_meet ? $p}. +notation > "𝟙" non associative with precedence 90 for @{oa_one}. +notation > "𝟘" non associative with precedence 90 for @{oa_zero}. record OAlgebra : Type2 := { oa_P :> SET1; - oa_leq : binary_morphism1 oa_P oa_P CPROP; - oa_overlap: binary_morphism1 oa_P oa_P CPROP; - oa_meet: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; - oa_join: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P; + oa_leq : oa_P × oa_P ⇒_1 CPROP; + oa_overlap: oa_P × oa_P ⇒_1 CPROP; + oa_meet: ∀I:SET.(I ⇒_2 oa_P) ⇒_2. oa_P; + oa_join: ∀I:SET.(I ⇒_2 oa_P) ⇒_2. oa_P; oa_one: oa_P; oa_zero: oa_P; - oa_leq_refl: ∀a:oa_P. oa_leq a a; - oa_leq_antisym: ∀a,b:oa_P.oa_leq a b → oa_leq b a → a = b; - oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c; - oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a; - oa_meet_inf: - ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P. - oa_leq p (oa_meet I p_i) = (∀i:I.oa_leq p (p_i i)); - oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = (∀i:I.oa_leq (p_i i) p); - oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p; - oa_one_top: ∀p:oa_P.oa_leq p oa_one; - oa_overlap_preserves_meet_: - ∀p,q:oa_P.oa_overlap p q → oa_overlap p - (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q }); - oa_join_split: - ∀I:SET.∀p.∀q:I ⇒ oa_P. - oa_overlap p (oa_join I q) = (∃i:I.oa_overlap p (q i)); + oa_leq_refl: ∀a:oa_P. a ≤ a; + oa_leq_antisym: ∀a,b:oa_P.a ≤ b → b ≤ a → a = b; + oa_leq_trans: ∀a,b,c:oa_P.a ≤ b → b ≤ c → a ≤ c; + oa_overlap_sym: ∀a,b:oa_P.a >< b → b >< a; + oa_meet_inf: ∀I:SET.∀p_i:I ⇒_2 oa_P.∀p:oa_P.p ≤ (⋀ p_i) = (∀i:I.p ≤ (p_i i)); + oa_join_sup: ∀I:SET.∀p_i:I ⇒_2 oa_P.∀p:oa_P.(⋁ p_i) ≤ p = (∀i:I.p_i i ≤ p); + oa_zero_bot: ∀p:oa_P.𝟘 ≤ p; + oa_one_top: ∀p:oa_P.p ≤ 𝟙; + oa_overlap_preserves_meet_: ∀p,q:oa_P.p >< q → + p >< (⋀ { x ∈ BOOL | If x then p else q(*match x with [ true ⇒ p | false ⇒ q ]*) | IF_THEN_ELSE_p oa_P p q }); + oa_join_split: ∀I:SET.∀p.∀q:I ⇒_2 oa_P.p >< (⋁ q) = (∃i:I.p >< (q i)); (*oa_base : setoid; 1) enum non e' il nome giusto perche' non e' suriettiva 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base oa_enum : ums oa_base oa_P; oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q *) - oa_density: - ∀p,q.(∀r.oa_overlap p r → oa_overlap q r) → oa_leq p q + oa_density: ∀p,q.(∀r.p >< r → q >< r) → p ≤ q }. +notation "hvbox(a break ≤ b)" non associative with precedence 45 for @{ 'leq $a $b }. + interpretation "o-algebra leq" 'leq a b = (fun21 ??? (oa_leq ?) a b). notation "hovbox(a mpadded width -150% (>)< b)" non associative with precedence 45 @@ -101,7 +109,7 @@ for @{ 'oa_meet $f }. interpretation "o-algebra meet" 'oa_meet f = (fun12 ?? (oa_meet ??) f). interpretation "o-algebra meet with explicit function" 'oa_meet_mk f = - (fun12 ?? (oa_meet ??) (mk_unary_morphism ?? f ?)). + (fun12 ?? (oa_meet ??) (mk_unary_morphism1 ?? f ?)). notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" non associative with precedence 50 for @{ 'oa_join $p }. @@ -115,7 +123,7 @@ interpretation "o-algebra join" 'oa_join f = interpretation "o-algebra join with explicit function" 'oa_join_mk f = (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). -definition binary_meet : ∀O:OAlgebra. binary_morphism1 O O O. +definition binary_meet : ∀O:OAlgebra. O × O ⇒_1 O. intros; split; [ intros (p q); apply (∧ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); @@ -131,7 +139,7 @@ interpretation "o-algebra binary meet" 'and a b = prefer coercion Type1_OF_OAlgebra. -definition binary_join : ∀O:OAlgebra. binary_morphism1 O O O. +definition binary_join : ∀O:OAlgebra. O × O ⇒_1 O. intros; split; [ intros (p q); apply (∨ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p ? p q }); @@ -146,11 +154,9 @@ interpretation "o-algebra binary join" 'or a b = (fun21 ??? (binary_join ?) a b). lemma oa_overlap_preservers_meet: ∀O:OAlgebra.∀p,q:O.p >< q → p >< (p ∧ q). -(* next change to avoid universe inconsistency *) -change in ⊢ (?→%→%→?) with (Type1_OF_OAlgebra O); -intros; lapply (oa_overlap_preserves_meet_ O p q f); -lapply (prop21 O O CPROP (oa_overlap O) p p ? (p ∧ q) # ?); -[3: apply (if ?? (Hletin1)); apply Hletin;|skip] apply refl1; +intros; lapply (oa_overlap_preserves_meet_ O p q f) as H; clear f; +(** screenshot "screenoa". *) +assumption; qed. notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" @@ -171,10 +177,10 @@ interpretation "o-algebra join with explicit function" 'oa_join_mk f = (fun12 ?? (oa_join ??) (mk_unary_morphism ?? f ?)). record ORelation (P,Q : OAlgebra) : Type2 ≝ { - or_f_ : carr2 (P ⇒ Q); - or_f_minus_star_ : carr2(P ⇒ Q); - or_f_star_ : carr2(Q ⇒ P); - or_f_minus_ : carr2(Q ⇒ P); + or_f_ : P ⇒_2 Q; + or_f_minus_star_ : P ⇒_2 Q; + or_f_star_ : Q ⇒_2 P; + or_f_minus_ : Q ⇒_2 P; or_prop1_ : ∀p,q. (or_f_ p ≤ q) = (p ≤ or_f_star_ q); or_prop2_ : ∀p,q. (or_f_minus_ p ≤ q) = (p ≤ or_f_minus_star_ q); or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q) @@ -206,32 +212,31 @@ definition ORelation_of_ORelation_setoid : ∀P,Q.ORelation_setoid P Q → ORelation P Q ≝ λP,Q,x.x. coercion ORelation_of_ORelation_setoid. -definition or_f_minus_star: - ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). +definition or_f_minus_star: ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (P ⇒_2 Q). intros; constructor 1; [ apply or_f_minus_star_; | intros; cases e; assumption] qed. -definition or_f: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). +definition or_f: ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (P ⇒_2 Q). intros; constructor 1; [ apply or_f_; | intros; cases e; assumption] qed. -definition or_f_minus: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). +definition or_f_minus: ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (Q ⇒_2 P). intros; constructor 1; [ apply or_f_minus_; | intros; cases e; assumption] qed. -definition or_f_star: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). +definition or_f_star: ∀P,Q:OAlgebra.(ORelation_setoid P Q) ⇒_2 (Q ⇒_2 P). intros; constructor 1; [ apply or_f_star_; | intros; cases e; assumption] qed. -lemma arrows1_of_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒ Q). +lemma arrows1_of_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒_2 Q). intros; apply (or_f ?? c); qed. coercion arrows1_of_ORelation_setoid. @@ -265,7 +270,7 @@ intros; apply (or_prop3_ ?? F p q); qed. definition ORelation_composition : ∀P,Q,R. - binary_morphism2 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). + (ORelation_setoid P Q) × (ORelation_setoid Q R) ⇒_2 (ORelation_setoid P R). intros; constructor 1; [ intros (F G); @@ -319,8 +324,6 @@ coercion ORelation_setoid_of_arrows2_OA. prefer coercion Type_OF_objs2. -(* alias symbol "eq" = "setoid1 eq". *) - (* qui la notazione non va *) lemma leq_to_eq_join: ∀S:OA.∀p,q:S. p ≤ q → q = (binary_join ? p q). intros; @@ -441,4 +444,4 @@ qed. lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U). intros; split; intro; apply oa_overlap_sym; assumption. -qed. \ No newline at end of file +qed.