X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-basic_pairs_to_o-basic_topologies.ma;h=b78e7b037046bededec4973267647e8e115270bc;hb=3e094922bf3fec6975fdbe6feceb509eaafe0563;hp=f2f6af0208c5c914fa25ab41db74f806e7da9804;hpb=8c0ccf03dbefd83818bc3b6849634f422f8ec727;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma index f2f6af020..b78e7b037 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma @@ -15,139 +15,13 @@ include "o-basic_pairs.ma". include "o-basic_topologies.ma". -(* qui la notazione non va *) -lemma leq_to_eq_join: ∀S:OA.∀p,q:S. p ≤ q → q = binary_join ? p q. - intros; - apply oa_leq_antisym; - [ apply oa_density; intros; - apply oa_overlap_sym; - unfold binary_join; simplify; - apply (. (oa_join_split : ?)); - exists; [ apply false ] - apply oa_overlap_sym; - assumption - | unfold binary_join; simplify; - apply (. (oa_join_sup : ?)); intro; - cases i; whd in ⊢ (? ? ? ? ? % ?); - [ assumption | apply oa_leq_refl ]] -qed. - -lemma overlap_monotone_left: ∀S:OA.∀p,q,r:S. p ≤ q → p >< r → q >< r. - intros; - apply (. (leq_to_eq_join : ?)‡#); - [ apply f; - | skip - | apply oa_overlap_sym; - unfold binary_join; simplify; - apply (. (oa_join_split : ?)); - exists [ apply true ] - apply oa_overlap_sym; - assumption; ] -qed. - -(* Part of proposition 9.9 *) -lemma f_minus_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻ p ≤ R⎻ q. - intros; - apply (. (or_prop2 : ?)); - apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop2 : ?)^ -1); apply oa_leq_refl;] -qed. - -(* Part of proposition 9.9 *) -lemma f_minus_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R⎻* p ≤ R⎻* q. - intros; - apply (. (or_prop2 : ?)^ -1); - apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop2 : ?)); apply oa_leq_refl;] -qed. - -(* Part of proposition 9.9 *) -lemma f_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R p ≤ R q. - intros; - apply (. (or_prop1 : ?)); - apply oa_leq_trans; [2: apply f; | skip | apply (. (or_prop1 : ?)^ -1); apply oa_leq_refl;] -qed. - -(* Part of proposition 9.9 *) -lemma f_star_image_monotone: ∀S,T.∀R:arrows2 OA S T.∀p,q. p ≤ q → R* p ≤ R* q. - intros; - apply (. (or_prop1 : ?)^ -1); - apply oa_leq_trans; [3: apply f; | skip | apply (. (or_prop1 : ?)); apply oa_leq_refl;] -qed. - -lemma lemma_10_2_a: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R⎻* (R⎻ p). - intros; - apply (. (or_prop2 : ?)^-1); - apply oa_leq_refl. -qed. - -lemma lemma_10_2_b: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* p) ≤ p. - intros; - apply (. (or_prop2 : ?)); - apply oa_leq_refl. -qed. - -lemma lemma_10_2_c: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R* (R p). - intros; - apply (. (or_prop1 : ?)^-1); - apply oa_leq_refl. -qed. - -lemma lemma_10_2_d: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* p) ≤ p. - intros; - apply (. (or_prop1 : ?)); - apply oa_leq_refl. -qed. - -lemma lemma_10_3_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p. - intros; apply oa_leq_antisym; - [ apply lemma_10_2_b; - | apply f_minus_image_monotone; - apply lemma_10_2_a; ] -qed. - -lemma lemma_10_3_b: ∀S,T.∀R:arrows2 OA S T.∀p. R* (R (R* p)) = R* p. - intros; apply oa_leq_antisym; - [ apply f_star_image_monotone; - apply (lemma_10_2_d ?? R p); - | apply lemma_10_2_c; ] -qed. - -lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p. - intros; apply oa_leq_antisym; - [ apply lemma_10_2_d; - | apply f_image_monotone; - apply (lemma_10_2_c ?? R p); ] -qed. - -lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p. - intros; apply oa_leq_antisym; - [ apply f_minus_star_image_monotone; - apply (lemma_10_2_b ?? R p); - | apply lemma_10_2_a; ] -qed. - -lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p). - intros; - (* BAD *) - lapply (†(lemma_10_3_a ?? R p)); [2: apply (R⎻* ); | skip | apply Hletin ] -qed. - -(* VEERY BAD! *) -axiom lemma_10_4_b: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R (R* p))) = R (R* p). -(* - intros; - (* BAD *) - lapply (†(lemma_10_3_b ?? R p)); [2: apply rule R; | skip | apply Hletin ] -qed. *) - -lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U). - intros; split; intro; apply oa_overlap_sym; assumption. -qed. +alias symbol "eq" = "setoid1 eq". (* Qui, per fare le cose per bene, ci serve la nozione di funtore categorico *) -definition o_basic_topology_of_o_basic_pair: BP → BTop. - intro; +definition o_basic_topology_of_o_basic_pair: OBP → BTop. + intro t; constructor 1; - [ apply (form t); + [ apply (Oform t); | apply (□_t ∘ Ext⎽t); | apply (◊_t ∘ Rest⎽t); | intros 2; split; intro; @@ -184,44 +58,35 @@ definition o_basic_topology_of_o_basic_pair: BP → BTop. qed. definition o_continuous_relation_of_o_relation_pair: - ∀BP1,BP2.arrows2 BP BP1 BP2 → + ∀BP1,BP2.arrows2 OBP BP1 BP2 → arrows2 BTop (o_basic_topology_of_o_basic_pair BP1) (o_basic_topology_of_o_basic_pair BP2). - intros; + intros (BP1 BP2 t); constructor 1; [ apply (t \sub \f); | unfold o_basic_topology_of_o_basic_pair; simplify; intros; apply sym1; - alias symbol "refl" = "refl1". - apply (.= †?); [1: apply (t \sub \f (((◊_BP1∘(⊩)* ) U))); | - lapply (†e); [2: apply rule t \sub \f; | skip | apply Hletin]] - change in ⊢ (? ? ? % ?) with ((◊_BP2 ∘(⊩)* ) ((t \sub \f ∘ (◊_BP1∘(⊩)* )) U)); - lapply (comp_assoc2 ????? (⊩)* (⊩) t \sub \f); - apply (.= †(Hletin ?)); clear Hletin; + apply (.= †(†e)); change in ⊢ (? ? ? (? ? ? ? %) ?) with ((t \sub \f ∘ (⊩)) ((⊩)* U)); - cut ?; - [3: apply CProp1; |5: cases (commute ?? t); [2: apply (e3 ^ -1 ((⊩)* U));] | 2,4: skip] - apply (.= †Hcut); + cut ((t \sub \f ∘ (⊩)) ((⊩)* U) = ((⊩) ∘ t \sub \c) ((⊩)* U)) as COM;[2: + cases (Ocommute ?? t); apply (e3 ^ -1 ((⊩)* U));] + apply (.= †COM); change in ⊢ (? ? ? % ?) with (((⊩) ∘ (⊩)* ) (((⊩) ∘ t \sub \c ∘ (⊩)* ) U)); apply (.= (lemma_10_3_c ?? (⊩) (t \sub \c ((⊩)* U)))); - apply (.= Hcut ^ -1); + apply (.= COM ^ -1); change in ⊢ (? ? ? % ?) with (t \sub \f (((⊩) ∘ (⊩)* ) U)); - apply (prop11 ?? t \sub \f); - apply (e ^ -1); + change in e with (U=((⊩)∘(⊩ \sub BP1) \sup * ) U); + apply (†e^-1); | unfold o_basic_topology_of_o_basic_pair; simplify; intros; apply sym1; - apply (.= †?); [1: apply (t \sub \f⎻* ((((⊩)⎻* ∘ (⊩)⎻) U))); | - lapply (†e); [2: apply rule (t \sub \f⎻* ); | skip | apply Hletin]] - change in ⊢ (? ? ? % ?) with (((⊩)⎻* ∘(⊩)⎻ ) ((t \sub \f⎻* ∘ ((⊩)⎻*∘(⊩)⎻ )) U)); - lapply (comp_assoc2 ????? (⊩)⎻ (⊩)⎻* t \sub \f⎻* ); - apply (.= †(Hletin ?)); clear Hletin; + apply (.= †(†e)); change in ⊢ (? ? ? (? ? ? ? %) ?) with ((t \sub \f⎻* ∘ (⊩)⎻* ) ((⊩)⎻ U)); - cut ?; - [3: apply CProp1; |5: cases (commute ?? t); [2: apply (e1 ^ -1 ((⊩)⎻ U));] | 2,4: skip] - apply (.= †Hcut); + cut ((t \sub \f⎻* ∘ (⊩)⎻* ) ((⊩)⎻ U) = ((⊩)⎻* ∘ t \sub \c⎻* ) ((⊩)⎻ U)) as COM;[2: + cases (Ocommute ?? t); apply (e1 ^ -1 ((⊩)⎻ U));] + apply (.= †COM); change in ⊢ (? ? ? % ?) with (((⊩)⎻* ∘ (⊩)⎻ ) (((⊩)⎻* ∘ t \sub \c⎻* ∘ (⊩)⎻ ) U)); apply (.= (lemma_10_3_d ?? (⊩) (t \sub \c⎻* ((⊩)⎻ U)))); - apply (.= Hcut ^ -1); + apply (.= COM ^ -1); change in ⊢ (? ? ? % ?) with (t \sub \f⎻* (((⊩)⎻* ∘ (⊩)⎻ ) U)); - apply (prop11 ?? t \sub \f⎻* ); - apply (e ^ -1); ] -qed. \ No newline at end of file + change in e with (U=((⊩)⎻* ∘(⊩ \sub BP1)⎻ ) U); + apply (†e^-1);] +qed.