X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-basic_topologies.ma;h=ae695f624f92907864505483ad0f783db7641420;hb=c78cbede35ed85575e274864e6b6b9c635c6956d;hp=a958da4258b31de8376571f0eafbbe52ffa6b7fe;hpb=e88702452d7ff1dcec1156e4e5588eaf577103a0;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma index a958da425..ae695f624 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma @@ -15,50 +15,55 @@ include "o-algebra.ma". include "o-saturations.ma". -record basic_topology: Type ≝ +record basic_topology: Type2 ≝ { carrbt:> OA; - A: arrows1 SET (oa_P carrbt) (oa_P carrbt); - J: arrows1 SET (oa_P carrbt) (oa_P carrbt); + A: carrbt ⇒ carrbt; + J: carrbt ⇒ carrbt; A_is_saturation: is_saturation ? A; J_is_reduction: is_reduction ? J; compatibility: ∀U,V. (A U >< J V) = (U >< J V) }. -record continuous_relation (S,T: basic_topology) : Type ≝ - { cont_rel:> arrows1 ? S T; +lemma hint: OA → objs2 OA. + intro; apply t; +qed. +coercion hint. + +record continuous_relation (S,T: basic_topology) : Type2 ≝ + { cont_rel:> arrows2 OA S T; + (* reduces uses eq1, saturated uses eq!!! *) reduced: ∀U. U = J ? U → cont_rel U = J ? (cont_rel U); saturated: ∀U. U = A ? U → cont_rel⎻* U = A ? (cont_rel⎻* U) }. -definition continuous_relation_setoid: basic_topology → basic_topology → setoid1. +definition continuous_relation_setoid: basic_topology → basic_topology → setoid2. intros (S T); constructor 1; [ apply (continuous_relation S T) | constructor 1; - [ apply (λr,s:continuous_relation S T.∀b. eq1 (oa_P (carrbt S)) (A ? (r⎻ b)) (A ? (s⎻ b))); - | simplify; intros; apply refl1; - | simplify; intros; apply sym1; apply H - | simplify; intros; apply trans1; [2: apply H |3: apply H1; |1: skip]]] + [ (*apply (λr,s:continuous_relation S T.∀b. eq1 (oa_P (carrbt S)) (A ? (r⎻ b)) (A ? (s⎻ b)));*) + apply (λr,s:continuous_relation S T.r⎻* ∘ (A S) = s⎻* ∘ (A ?)); + | simplify; intros; apply refl2; + | simplify; intros; apply sym2; apply e + | simplify; intros; apply trans2; [2: apply e |3: apply e1; |1: skip]]] qed. -definition cont_rel': ∀S,T: basic_topology. continuous_relation_setoid S T → arrows1 ? S T ≝ cont_rel. +definition cont_rel': ∀S,T: basic_topology. continuous_relation_setoid S T → arrows2 ? S T ≝ cont_rel. coercion cont_rel'. definition cont_rel'': ∀S,T: basic_topology. - continuous_relation_setoid S T → unary_morphism (oa_P (carrbt S)) (oa_P (carrbt T)). + carr2 (continuous_relation_setoid S T) → ORelation_setoid (carrbt S) (carrbt T). intros; apply rule cont_rel; apply c; qed. coercion cont_rel''. +(* theorem continuous_relation_eq': ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. a = a' → ∀X.a⎻* (A o1 X) = a'⎻* (A o1 X). - intros; - lapply (prop_1_SET ??? H); - - split; intro; unfold minus_star_image; simplify; intros; + intros; apply oa_leq_antisym; intro; unfold minus_star_image; simplify; intros; [ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption] @@ -75,11 +80,11 @@ qed. theorem continuous_relation_eq_inv': ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. - (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → a=a'. + (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → a=a'. intros 6; cut (∀a,a': continuous_relation_setoid o1 o2. - (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → - ∀V:o2. A ? (ext ?? a' V) ⊆ A ? (ext ?? a V)); + (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → + ∀V:(oa_P (carrbt o2)). A o1 (a'⎻ V) ≤ A o1 (a⎻ V)); [2: clear b H a' a; intros; lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip] (* fundamental adjunction here! to be taken out *) @@ -101,84 +106,80 @@ theorem continuous_relation_eq_inv': assumption;] split; apply Hcut; [2: assumption | intro; apply sym1; apply H] qed. +*) +axiom daemon: False. definition continuous_relation_comp: ∀o1,o2,o3. continuous_relation_setoid o1 o2 → continuous_relation_setoid o2 o3 → continuous_relation_setoid o1 o3. intros (o1 o2 o3 r s); constructor 1; - [ apply (s ∘ r) + [ apply (s ∘ r); | intros; apply sym1; - apply (.= †(image_comp ??????)); - apply (.= (reduced ?????)\sup -1); - [ apply (.= (reduced ?????)); [ assumption | apply refl1 ] - | apply (.= (image_comp ??????)\sup -1); - apply refl1] - | intros; - apply sym1; - apply (.= †(minus_star_image_comp ??????)); - apply (.= (saturated ?????)\sup -1); - [ apply (.= (saturated ?????)); [ assumption | apply refl1 ] - | apply (.= (minus_star_image_comp ??????)\sup -1); - apply refl1]] + change in match ((s ∘ r) U) with (s (r U)); + (**) unfold FunClass_1_OF_Type_OF_setoid2; + unfold objs2_OF_basic_topology1; unfold hint; + letin reduced := reduced; clearbody reduced; + unfold uncurry_arrows in reduced ⊢ %; (**) + apply (.= (reduced : ?)\sup -1); + [ (*BAD*) change with (eq1 ? (r U) (J ? (r U))); + (* BAD U *) apply (.= (reduced ??? U ?)); [ assumption | apply refl1 ] + | apply refl1] + | intros; + apply sym1; + change in match ((s ∘ r)⎻* U) with (s⎻* (r⎻* U)); + apply (.= (saturated : ?)\sup -1); + [ apply (.= (saturated : ?)); [ assumption | apply refl1 ] + | apply refl1]] qed. -definition BTop: category1. +definition BTop: category2. constructor 1; [ apply basic_topology | apply continuous_relation_setoid | intro; constructor 1; - [ apply id1 - | intros; - apply (.= (image_id ??)); - apply sym1; - apply (.= †(image_id ??)); - apply sym1; - assumption - | intros; - apply (.= (minus_star_image_id ??)); - apply sym1; - apply (.= †(minus_star_image_id ??)); - apply sym1; - assumption] + [ apply id2 + | intros; apply e; + | intros; apply e;] | intros; constructor 1; [ apply continuous_relation_comp; - | intros; simplify; intro x; simplify; - lapply depth=0 (continuous_relation_eq' ???? H) as H'; - lapply depth=0 (continuous_relation_eq' ???? H1) as H1'; - letin K ≝ (λX.H1' (minus_star_image ?? a (A ? X))); clearbody K; - cut (∀X:Ω \sup o1. - minus_star_image o2 o3 b (A o2 (minus_star_image o1 o2 a (A o1 X))) - = minus_star_image o2 o3 b' (A o2 (minus_star_image o1 o2 a' (A o1 X)))); - [2: intro; apply sym1; apply (.= #‡(†((H' ?)\sup -1))); apply sym1; apply (K X);] - clear K H' H1'; - cut (∀X:Ω \sup o1. - minus_star_image o1 o3 (b ∘ a) (A o1 X) = minus_star_image o1 o3 (b'∘a') (A o1 X)); - [2: intro; - apply (.= (minus_star_image_comp ??????)); - apply (.= #‡(saturated ?????)); - [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ] - apply sym1; - apply (.= (minus_star_image_comp ??????)); - apply (.= #‡(saturated ?????)); - [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ] - apply ((Hcut X) \sup -1)] - clear Hcut; generalize in match x; clear x; - apply (continuous_relation_eq_inv'); - apply Hcut1;] - | intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify; - apply (.= †(ASSOC1‡#)); - apply refl1 - | intros; simplify; intro; unfold continuous_relation_comp; simplify; - apply (.= †((id_neutral_right1 ????)‡#)); - apply refl1 - | intros; simplify; intro; simplify; - apply (.= †((id_neutral_left1 ????)‡#)); - apply refl1] + | intros; simplify; + change with ((b⎻* ∘ a⎻* ) ∘ A o1 = ((b'⎻* ∘ a'⎻* ) ∘ A o1)); + change with (b⎻* ∘ (a⎻* ∘ A o1) = b'⎻* ∘ (a'⎻* ∘ A o1)); + change in e with (a⎻* ∘ A o1 = a'⎻* ∘ A o1); + change in e1 with (b⎻* ∘ A o2 = b'⎻* ∘ A o2); + apply (.= e‡#); + intro x; + change with (b⎻* (a'⎻* (A o1 x)) = b'⎻*(a'⎻* (A o1 x))); + alias symbol "trans" = "trans1". + alias symbol "prop1" = "prop11". + alias symbol "invert" = "setoid1 symmetry". + lapply (.= †(saturated o1 o2 a' (A o1 x) : ?)); + [3: apply (b⎻* ); | 5: apply Hletin; |1,2: skip; + |apply ((saturation_idempotent ?? (A_is_saturation o1) x)^-1); ] + change in e1 with (∀x.b⎻* (A o2 x) = b'⎻* (A o2 x)); + apply (.= (e1 (a'⎻* (A o1 x)))); + alias symbol "invert" = "setoid1 symmetry". + lapply (†((saturated ?? a' (A o1 x) : ?) ^ -1)); + [2: apply (b'⎻* ); |4: apply Hletin; | skip; + |apply ((saturation_idempotent ?? (A_is_saturation o1) x)^-1);]] + | intros; simplify; + change with (((a34⎻* ∘ a23⎻* ) ∘ a12⎻* ) ∘ A o1 = ((a34⎻* ∘ (a23⎻* ∘ a12⎻* )) ∘ A o1)); + apply rule (#‡ASSOC ^ -1); + | intros; simplify; + change with ((a⎻* ∘ (id2 ? o1)⎻* ) ∘ A o1 = a⎻* ∘ A o1); + apply (#‡(id_neutral_right2 : ?)); + | intros; simplify; + change with (((id2 ? o2)⎻* ∘ a⎻* ) ∘ A o1 = a⎻* ∘ A o1); + apply (#‡(id_neutral_left2 : ?));] qed. +definition btop_carr: BTop → Type1 ≝ λo:BTop. carr1 (oa_P (carrbt o)). +coercion btop_carr. + +(* (*CSC: unused! *) (* this proof is more logic-oriented than set/lattice oriented *) theorem continuous_relation_eqS: @@ -203,3 +204,4 @@ theorem continuous_relation_eqS: [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;] apply Hcut2; assumption. qed. +*)