X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-basic_topologies.ma;h=c0fb6c6a7ff64f158bb667149ca1530ec497d69f;hb=bd3b9cc44e65e316159ab56d3099949224413d66;hp=a958da4258b31de8376571f0eafbbe52ffa6b7fe;hpb=e88702452d7ff1dcec1156e4e5588eaf577103a0;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma index a958da425..c0fb6c6a7 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma @@ -26,6 +26,7 @@ record basic_topology: Type ≝ record continuous_relation (S,T: basic_topology) : Type ≝ { cont_rel:> arrows1 ? S T; + (* reduces uses eq1, saturated uses eq!!! *) reduced: ∀U. U = J ? U → cont_rel U = J ? (cont_rel U); saturated: ∀U. U = A ? U → cont_rel⎻* U = A ? (cont_rel⎻* U) }. @@ -34,7 +35,8 @@ definition continuous_relation_setoid: basic_topology → basic_topology → set intros (S T); constructor 1; [ apply (continuous_relation S T) | constructor 1; - [ apply (λr,s:continuous_relation S T.∀b. eq1 (oa_P (carrbt S)) (A ? (r⎻ b)) (A ? (s⎻ b))); + [ (*apply (λr,s:continuous_relation S T.∀b. eq1 (oa_P (carrbt S)) (A ? (r⎻ b)) (A ? (s⎻ b)));*) + apply (λr,s:continuous_relation S T.r⎻* ∘ (A S) = s⎻* ∘ (A ?)); | simplify; intros; apply refl1; | simplify; intros; apply sym1; apply H | simplify; intros; apply trans1; [2: apply H |3: apply H1; |1: skip]]] @@ -51,14 +53,11 @@ definition cont_rel'': qed. coercion cont_rel''. - +(* theorem continuous_relation_eq': ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. a = a' → ∀X.a⎻* (A o1 X) = a'⎻* (A o1 X). - intros; - lapply (prop_1_SET ??? H); - - split; intro; unfold minus_star_image; simplify; intros; + intros; apply oa_leq_antisym; intro; unfold minus_star_image; simplify; intros; [ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption] @@ -75,11 +74,11 @@ qed. theorem continuous_relation_eq_inv': ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. - (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → a=a'. + (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → a=a'. intros 6; cut (∀a,a': continuous_relation_setoid o1 o2. - (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → - ∀V:o2. A ? (ext ?? a' V) ⊆ A ? (ext ?? a V)); + (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → + ∀V:(oa_P (carrbt o2)). A o1 (a'⎻ V) ≤ A o1 (a⎻ V)); [2: clear b H a' a; intros; lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip] (* fundamental adjunction here! to be taken out *) @@ -101,7 +100,7 @@ theorem continuous_relation_eq_inv': assumption;] split; apply Hcut; [2: assumption | intro; apply sym1; apply H] qed. - +*) definition continuous_relation_comp: ∀o1,o2,o3. continuous_relation_setoid o1 o2 → @@ -111,18 +110,18 @@ definition continuous_relation_comp: [ apply (s ∘ r) | intros; apply sym1; - apply (.= †(image_comp ??????)); - apply (.= (reduced ?????)\sup -1); - [ apply (.= (reduced ?????)); [ assumption | apply refl1 ] - | apply (.= (image_comp ??????)\sup -1); - apply refl1] - | intros; - apply sym1; - apply (.= †(minus_star_image_comp ??????)); - apply (.= (saturated ?????)\sup -1); - [ apply (.= (saturated ?????)); [ assumption | apply refl1 ] - | apply (.= (minus_star_image_comp ??????)\sup -1); - apply refl1]] + change in match ((s ∘ r) U) with (s (r U)); + (*BAD*) unfold FunClass_1_OF_carr1; + apply (.= ((reduced : ?)\sup -1)); + [ (*BAD*) change with (eq1 ? (r U) (J ? (r U))); + (* BAD U *) apply (.= (reduced ??? U ?)); [ assumption | apply refl1 ] + | apply refl1] + | intros; + apply sym; + change in match ((s ∘ r)⎻* U) with (s⎻* (r⎻* U)); + apply (.= (saturated : ?)\sup -1); + [ apply (.= (saturated : ?)); [ assumption | apply refl ] + | apply refl]] qed. definition BTop: category1. @@ -131,54 +130,40 @@ definition BTop: category1. | apply continuous_relation_setoid | intro; constructor 1; [ apply id1 - | intros; - apply (.= (image_id ??)); - apply sym1; - apply (.= †(image_id ??)); - apply sym1; - assumption - | intros; - apply (.= (minus_star_image_id ??)); - apply sym1; - apply (.= †(minus_star_image_id ??)); - apply sym1; - assumption] + | intros; apply H; + | intros; apply H;] | intros; constructor 1; [ apply continuous_relation_comp; - | intros; simplify; intro x; simplify; - lapply depth=0 (continuous_relation_eq' ???? H) as H'; - lapply depth=0 (continuous_relation_eq' ???? H1) as H1'; - letin K ≝ (λX.H1' (minus_star_image ?? a (A ? X))); clearbody K; - cut (∀X:Ω \sup o1. - minus_star_image o2 o3 b (A o2 (minus_star_image o1 o2 a (A o1 X))) - = minus_star_image o2 o3 b' (A o2 (minus_star_image o1 o2 a' (A o1 X)))); - [2: intro; apply sym1; apply (.= #‡(†((H' ?)\sup -1))); apply sym1; apply (K X);] - clear K H' H1'; - cut (∀X:Ω \sup o1. - minus_star_image o1 o3 (b ∘ a) (A o1 X) = minus_star_image o1 o3 (b'∘a') (A o1 X)); - [2: intro; - apply (.= (minus_star_image_comp ??????)); - apply (.= #‡(saturated ?????)); - [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ] - apply sym1; - apply (.= (minus_star_image_comp ??????)); - apply (.= #‡(saturated ?????)); - [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ] - apply ((Hcut X) \sup -1)] - clear Hcut; generalize in match x; clear x; - apply (continuous_relation_eq_inv'); - apply Hcut1;] - | intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify; - apply (.= †(ASSOC1‡#)); - apply refl1 - | intros; simplify; intro; unfold continuous_relation_comp; simplify; - apply (.= †((id_neutral_right1 ????)‡#)); - apply refl1 - | intros; simplify; intro; simplify; - apply (.= †((id_neutral_left1 ????)‡#)); - apply refl1] + | intros; simplify; (*intro x; simplify;*) + change with (b⎻* ∘ (a⎻* ∘ A o1) = b'⎻* ∘ (a'⎻* ∘ A o1)); + change in H with (a⎻* ∘ A o1 = a'⎻* ∘ A o1); + change in H1 with (b⎻* ∘ A o2 = b'⎻* ∘ A o2); + apply (.= H‡#); + intro x; + + change with (eq1 (oa_P (carrbt o3)) (b⎻* (a'⎻* (A o1 x))) (b'⎻*(a'⎻* (A o1 x)))); + lapply (saturated o1 o2 a' (A o1 x):?) as X; + [ apply ((saturation_idempotent ?? (A_is_saturation o1) x)^-1) ] + change in X with (eq1 (oa_P (carrbt o2)) (a'⎻* (A o1 x)) (A o2 (a'⎻* (A o1 x)))); + unfold uncurry_arrows; + apply (.= †X); whd in H1; + lapply (H1 (a'⎻* (A o1 x))) as X1; + change in X1 with (eq1 (oa_P (carrbt o3)) (b⎻* (A o2 (a'⎻* (A o1 x)))) (b'⎻* (A o2 (a' \sup ⎻* (A o1 x))))); + apply (.= X1); + unfold uncurry_arrows; + apply (†(X\sup -1));] + | intros; simplify; + change with (((a34⎻* ∘ a23⎻* ) ∘ a12⎻* ) ∘ A o1 = ((a34⎻* ∘ (a23⎻* ∘ a12⎻* )) ∘ A o1)); + apply rule (#‡ASSOC1\sup -1); + | intros; simplify; + change with ((a⎻* ∘ (id1 ? o1)⎻* ) ∘ A o1 = a⎻* ∘ A o1); + apply (#‡(id_neutral_right1 : ?)); + | intros; simplify; + change with (((id1 ? o2)⎻* ∘ a⎻* ) ∘ A o1 = a⎻* ∘ A o1); + apply (#‡(id_neutral_left1 : ?));] qed. +(* (*CSC: unused! *) (* this proof is more logic-oriented than set/lattice oriented *) theorem continuous_relation_eqS: @@ -203,3 +188,4 @@ theorem continuous_relation_eqS: [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;] apply Hcut2; assumption. qed. +*) \ No newline at end of file