X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-concrete_spaces.ma;h=90086b4d2f0e8646b973ef60925f8ccaee6db19b;hb=13114a0147a28f8c7359c9c19ee254716eb5f55a;hp=61b8f77e7582b2b0f4834537d63d1ab7909b3dc2;hpb=680b7493de237259ddb589a92be4b8bbc8de3cbf;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma b/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma index 61b8f77e7..90086b4d2 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma @@ -15,150 +15,120 @@ include "o-basic_pairs.ma". include "o-saturations.ma". -notation "□ \sub b" non associative with precedence 90 for @{'box $b}. -notation > "□_term 90 b" non associative with precedence 90 for @{'box $b}. -interpretation "Universal image ⊩⎻*" 'box x = (or_f_minus_star _ _ (rel x)). - -notation "◊ \sub b" non associative with precedence 90 for @{'diamond $b}. -notation > "◊_term 90 b" non associative with precedence 90 for @{'diamond $b}. -interpretation "Existential image ⊩" 'diamond x = (or_f _ _ (rel x)). - -notation "'Rest' \sub b" non associative with precedence 90 for @{'rest $b}. -notation > "'Rest'⎽term 90 b" non associative with precedence 90 for @{'rest $b}. -interpretation "Universal pre-image ⊩*" 'rest x = (or_f_star _ _ (rel x)). - -notation "'Ext' \sub b" non associative with precedence 90 for @{'ext $b}. -notation > "'Ext'⎽term 90 b" non associative with precedence 90 for @{'ext $b}. -interpretation "Existential pre-image ⊩⎻" 'ext x = (or_f_minus _ _ (rel x)). - -definition A : ∀b:BP. unary_morphism (oa_P (form b)) (oa_P (form b)). +definition A : ∀b:OBP. unary_morphism1 (Oform b) (Oform b). intros; constructor 1; [ apply (λx.□_b (Ext⎽b x)); - | do 2 unfold FunClass_1_OF_carr1; intros; apply (†(†H));] + | intros; apply (†(†e));] qed. -lemma xxx : ∀x.carr x → carr1 (setoid1_of_setoid x). intros; assumption; qed. -coercion xxx. - -definition d_p_i : - ∀S,I:SET.∀d:unary_morphism S S.∀p:arrows1 SET I S.arrows1 SET I S. -intros; constructor 1; - [ apply (λi:I. u (c i)); - | unfold FunClass_1_OF_carr1; intros; apply (†(†H));]. +lemma down_p : ∀S:SET1.∀I:SET.∀u:S⇒S.∀c:arrows2 SET1 I S.∀a:I.∀a':I.a=a'→u (c a)=u (c a'). +intros; apply (†(†e)); qed. -alias symbol "eq" = "setoid eq". -alias symbol "and" = "o-algebra binary meet". -record concrete_space : Type ≝ - { bp:> BP; +record Oconcrete_space : Type2 ≝ + { Obp:> OBP; (*distr : is_distributive (form bp);*) - downarrow: unary_morphism (oa_P (form bp)) (oa_P (form bp)); - downarrow_is_sat: is_saturation ? downarrow; - converges: ∀q1,q2. - (Ext⎽bp q1 ∧ (Ext⎽bp q2)) = (Ext⎽bp ((downarrow q1) ∧ (downarrow q2))); - all_covered: Ext⎽bp (oa_one (form bp)) = oa_one (concr bp); - il2: ∀I:setoid.∀p:ums I (oa_P (form bp)). - downarrow (oa_join ? I (d_p_i ?? downarrow p)) = - oa_join ? I (d_p_i ?? downarrow p); - il1: ∀q.downarrow (A ? q) = A ? q + Odownarrow: unary_morphism1 (Oform Obp) (Oform Obp); + Odownarrow_is_sat: is_o_saturation ? Odownarrow; + Oconverges: ∀q1,q2. + (Ext⎽Obp q1 ∧ (Ext⎽Obp q2)) = (Ext⎽Obp ((Odownarrow q1) ∧ (Odownarrow q2))); + Oall_covered: Ext⎽Obp (oa_one (Oform Obp)) = oa_one (Oconcr Obp); + Oil2: ∀I:SET.∀p:arrows2 SET1 I (Oform Obp). + Odownarrow (∨ { x ∈ I | Odownarrow (p x) | down_p ???? }) = + ∨ { x ∈ I | Odownarrow (p x) | down_p ???? }; + Oil1: ∀q.Odownarrow (A ? q) = A ? q }. -interpretation "o-concrete space downarrow" 'downarrow x = (fun_1 __ (downarrow _) x). +interpretation "o-concrete space downarrow" 'downarrow x = + (fun11 __ (Odownarrow _) x). -definition bp': concrete_space → basic_pair ≝ λc.bp c. -coercion bp'. +definition Obinary_downarrow : + ∀C:Oconcrete_space.binary_morphism1 (Oform C) (Oform C) (Oform C). +intros; constructor 1; +[ intros; apply (↓ c ∧ ↓ c1); +| intros; + alias symbol "prop2" = "prop21". + alias symbol "prop1" = "prop11". + apply ((†e)‡(†e1));] +qed. -record convergent_relation_pair (CS1,CS2: concrete_space) : Type ≝ - { rp:> arrows1 ? CS1 CS2; - respects_converges: - ∀b,c. - extS ?? rp \sub\c (BPextS CS2 (b ↓ c)) = - BPextS CS1 ((extS ?? rp \sub\f b) ↓ (extS ?? rp \sub\f c)); - respects_all_covered: - extS ?? rp\sub\c (BPextS CS2 (form CS2)) = BPextS CS1 (form CS1) - }. +interpretation "concrete_space binary ↓" 'fintersects a b = (fun21 _ _ _ (Obinary_downarrow _) a b). -definition rp' : ∀CS1,CS2. convergent_relation_pair CS1 CS2 → relation_pair CS1 CS2 ≝ - λCS1,CS2,c. rp CS1 CS2 c. - -coercion rp'. +record Oconvergent_relation_pair (CS1,CS2: Oconcrete_space) : Type2 ≝ + { Orp:> arrows2 ? CS1 CS2; + Orespects_converges: + ∀b,c. eq1 ? (Orp\sub\c⎻ (Ext⎽CS2 (b ↓ c))) (Ext⎽CS1 (Orp\sub\f⎻ b ↓ Orp\sub\f⎻ c)); + Orespects_all_covered: + eq1 ? (Orp\sub\c⎻ (Ext⎽CS2 (oa_one (Oform CS2)))) + (Ext⎽CS1 (oa_one (Oform CS1))) + }. -definition convergent_relation_space_setoid: concrete_space → concrete_space → setoid1. - intros; +definition Oconvergent_relation_space_setoid: Oconcrete_space → Oconcrete_space → setoid2. + intros (c c1); constructor 1; - [ apply (convergent_relation_pair c c1) + [ apply (Oconvergent_relation_pair c c1) | constructor 1; - [ intros; - apply (relation_pair_equality c c1 c2 c3); - | intros 1; apply refl1; - | intros 2; apply sym1; - | intros 3; apply trans1]] + [ intros (c2 c3); + apply (Orelation_pair_equality c c1 c2 c3); + | intros 1; apply refl2; + | intros 2; apply sym2; + | intros 3; apply trans2]] qed. -definition rp'': ∀CS1,CS2.convergent_relation_space_setoid CS1 CS2 → arrows1 BP CS1 CS2 ≝ - λCS1,CS2,c.rp ?? c. - -coercion rp''. - -definition convergent_relation_space_composition: - ∀o1,o2,o3: concrete_space. - binary_morphism1 - (convergent_relation_space_setoid o1 o2) - (convergent_relation_space_setoid o2 o3) - (convergent_relation_space_setoid o1 o3). +definition Oconvergent_relation_space_of_Oconvergent_relation_space_setoid: + ∀CS1,CS2.carr2 (Oconvergent_relation_space_setoid CS1 CS2) → + Oconvergent_relation_pair CS1 CS2 ≝ λP,Q,c.c. +coercion Oconvergent_relation_space_of_Oconvergent_relation_space_setoid. + +definition Oconvergent_relation_space_composition: + ∀o1,o2,o3: Oconcrete_space. + binary_morphism2 + (Oconvergent_relation_space_setoid o1 o2) + (Oconvergent_relation_space_setoid o2 o3) + (Oconvergent_relation_space_setoid o1 o3). intros; constructor 1; - [ intros; whd in c c1 ⊢ %; + [ intros; whd in t t1 ⊢ %; constructor 1; - [ apply (fun1 ??? (comp1 BP ???)); [apply (bp o2) |*: apply rp; assumption] + [ apply (c1 ∘ c); | intros; - change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c); - change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? (? ? ? (? ? ? %) ?) ?))) - with (c1 \sub \f ∘ c \sub \f); - change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? ? (? ? ? (? ? ? %) ?)))) - with (c1 \sub \f ∘ c \sub \f); - apply (.= (extS_com ??????)); - apply (.= (†(respects_converges ?????))); - apply (.= (respects_converges ?????)); - apply (.= (†(((extS_com ??????) \sup -1)‡(extS_com ??????)\sup -1))); - apply refl1; - | change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c); - apply (.= (extS_com ??????)); - apply (.= (†(respects_all_covered ???))); - apply (.= respects_all_covered ???); - apply refl1] + change in ⊢ (? ? ? % ?) with (c\sub\c⎻ (c1\sub\c⎻ (Ext⎽o3 (b↓c2)))); + alias symbol "trans" = "trans1". + apply (.= († (Orespects_converges : ?))); + apply (Orespects_converges ?? c (c1\sub\f⎻ b) (c1\sub\f⎻ c2)); + | change in ⊢ (? ? ? % ?) with (c\sub\c⎻ (c1\sub\c⎻ (Ext⎽o3 (oa_one (Oform o3))))); + apply (.= (†(Orespects_all_covered :?))); + apply rule (Orespects_all_covered ?? c);] | intros; - change with (b ∘ a = b' ∘ a'); - change in H with (rp'' ?? a = rp'' ?? a'); - change in H1 with (rp'' ?? b = rp ?? b'); - apply (.= (H‡H1)); - apply refl1] + change with (b ∘ a = b' ∘ a'); + change in e with (Orp ?? a = Orp ?? a'); + change in e1 with (Orp ?? b = Orp ?? b'); + apply (e‡e1);] qed. -definition CSPA: category1. +definition OCSPA: category2. constructor 1; - [ apply concrete_space - | apply convergent_relation_space_setoid + [ apply Oconcrete_space + | apply Oconvergent_relation_space_setoid | intro; constructor 1; - [ apply id1 - | intros; - unfold id; simplify; - apply (.= (equalset_extS_id_X_X ??)); - apply (.= (†((equalset_extS_id_X_X ??)\sup -1‡ - (equalset_extS_id_X_X ??)\sup -1))); - apply refl1; - | apply (.= (equalset_extS_id_X_X ??)); - apply refl1] - | apply convergent_relation_space_composition - | intros; simplify; + [ apply id2 + | intros; apply refl1; + | apply refl1] + | apply Oconvergent_relation_space_composition + | intros; simplify; whd in a12 a23 a34; change with (a34 ∘ (a23 ∘ a12) = (a34 ∘ a23) ∘ a12); - apply (.= ASSOC1); - apply refl1 + apply rule ASSOC; | intros; simplify; - change with (a ∘ id1 ? o1 = a); - apply (.= id_neutral_right1 ????); - apply refl1 + change with (a ∘ id2 OBP o1 = a); + apply (id_neutral_right2 : ?); | intros; simplify; - change with (id1 ? o2 ∘ a = a); - apply (.= id_neutral_left1 ????); - apply refl1] + change with (id2 ? o2 ∘ a = a); + apply (id_neutral_left2 : ?);] qed. + +definition Oconcrete_space_of_OCSPA : objs2 OCSPA → Oconcrete_space ≝ λx.x. +coercion Oconcrete_space_of_OCSPA. + +definition Oconvergent_relation_space_setoid_of_arrows2_OCSPA : + ∀P,Q. arrows2 OCSPA P Q → Oconvergent_relation_space_setoid P Q ≝ λP,Q,x.x. +coercion Oconvergent_relation_space_setoid_of_arrows2_OCSPA. +