X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-concrete_spaces.ma;h=e90ec7fe401942dc219b7d98be8669760cd9fabd;hb=33fbecf99c187fb4fc84a68ee9f479da046e9df9;hp=4e989cb14f6489c02bb5d9330354e33292ad4b55;hpb=4dfb1305a9c4a7c292f4b1957de1454d46c1ab8a;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma b/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma index 4e989cb14..e90ec7fe4 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma @@ -17,143 +17,148 @@ include "o-saturations.ma". notation "□ \sub b" non associative with precedence 90 for @{'box $b}. notation > "□_term 90 b" non associative with precedence 90 for @{'box $b}. -interpretation "Universal image ⊩⎻*" 'box x = (or_f_minus_star _ _ (rel x)). +interpretation "Universal image ⊩⎻*" 'box x = (fun12 _ _ (or_f_minus_star _ _) (rel x)). notation "◊ \sub b" non associative with precedence 90 for @{'diamond $b}. notation > "◊_term 90 b" non associative with precedence 90 for @{'diamond $b}. -interpretation "Existential image ⊩" 'diamond x = (or_f _ _ (rel x)). +interpretation "Existential image ⊩" 'diamond x = (fun12 _ _ (or_f _ _) (rel x)). notation "'Rest' \sub b" non associative with precedence 90 for @{'rest $b}. notation > "'Rest'⎽term 90 b" non associative with precedence 90 for @{'rest $b}. -interpretation "Universal pre-image ⊩*" 'rest x = (or_f_star _ _ (rel x)). +interpretation "Universal pre-image ⊩*" 'rest x = (fun12 _ _ (or_f_star _ _) (rel x)). notation "'Ext' \sub b" non associative with precedence 90 for @{'ext $b}. notation > "'Ext'⎽term 90 b" non associative with precedence 90 for @{'ext $b}. -interpretation "Existential pre-image ⊩⎻" 'ext x = (or_f_minus _ _ (rel x)). +interpretation "Existential pre-image ⊩⎻" 'ext x = (fun12 _ _ (or_f_minus _ _) (rel x)). -definition A : ∀b:BP. unary_morphism (oa_P (form b)) (oa_P (form b)). -intros; constructor 1; [ apply (λx.□_b (Ext⎽b x)); | intros; apply (†(†H));] qed. - -lemma xxx : ∀x.carr x → carr1 (setoid1_of_setoid x). intros; assumption; qed. -coercion xxx. +definition A : ∀b:BP. unary_morphism1 (form b) (form b). +intros; constructor 1; + [ apply (λx.□_b (Ext⎽b x)); + | do 2 unfold FunClass_1_OF_Type_OF_setoid21; intros; apply (†(†e));] +qed. -definition d_p_i : - ∀S:setoid.∀I:setoid.∀d:unary_morphism S S.∀p:ums I S.ums I S. -intros; constructor 1; [ apply (λi:I. u (c i));| intros; apply (†(†H));]. -qed. +lemma down_p : ∀S:SET1.∀I:SET.∀u:S⇒S.∀c:arrows2 SET1 I S.∀a:I.∀a':I.a=a'→u (c a)=u (c a'). +intros; apply (†(†e)); +qed. -alias symbol "eq" = "setoid eq". -alias symbol "and" = "o-algebra binary meet". -record concrete_space : Type ≝ +record concrete_space : Type2 ≝ { bp:> BP; (*distr : is_distributive (form bp);*) - downarrow: unary_morphism (oa_P (form bp)) (oa_P (form bp)); - downarrow_is_sat: is_saturation ? downarrow; + downarrow: unary_morphism1 (form bp) (form bp); + downarrow_is_sat: is_o_saturation ? downarrow; converges: ∀q1,q2. (Ext⎽bp q1 ∧ (Ext⎽bp q2)) = (Ext⎽bp ((downarrow q1) ∧ (downarrow q2))); all_covered: Ext⎽bp (oa_one (form bp)) = oa_one (concr bp); - il2: ∀I:setoid.∀p:ums I (oa_P (form bp)). - downarrow (oa_join ? I (d_p_i ?? downarrow p)) = - oa_join ? I (d_p_i ?? downarrow p); + il2: ∀I:SET.∀p:arrows2 SET1 I (form bp). + downarrow (∨ { x ∈ I | downarrow (p x) | down_p ???? }) = + ∨ { x ∈ I | downarrow (p x) | down_p ???? }; il1: ∀q.downarrow (A ? q) = A ? q }. -interpretation "o-concrete space downarrow" 'downarrow x = (fun_1 __ (downarrow _) x). +interpretation "o-concrete space downarrow" 'downarrow x = + (fun11 __ (downarrow _) x). definition bp': concrete_space → basic_pair ≝ λc.bp c. coercion bp'. -record convergent_relation_pair (CS1,CS2: concrete_space) : Type ≝ - { rp:> arrows1 ? CS1 CS2; +definition bp'': concrete_space → objs2 BP. + intro; apply (bp' c); +qed. +coercion bp''. + +definition binary_downarrow : + ∀C:concrete_space.binary_morphism1 (form C) (form C) (form C). +intros; constructor 1; +[ intros; apply (↓ t ∧ ↓ t1); +| intros; + alias symbol "prop2" = "prop21". + alias symbol "prop1" = "prop11". + apply ((†e)‡(†e1));] +qed. + +interpretation "concrete_space binary ↓" 'fintersects a b = (fun21 _ _ _ (binary_downarrow _) a b). + +record convergent_relation_pair (CS1,CS2: concrete_space) : Type2 ≝ + { rp:> arrows2 ? CS1 CS2; respects_converges: - ∀b,c. - extS ?? rp \sub\c (BPextS CS2 (b ↓ c)) = - BPextS CS1 ((extS ?? rp \sub\f b) ↓ (extS ?? rp \sub\f c)); + ∀b,c. eq1 ? (rp\sub\c⎻ (Ext⎽CS2 (b ↓ c))) (Ext⎽CS1 (rp\sub\f⎻ b ↓ rp\sub\f⎻ c)); respects_all_covered: - extS ?? rp\sub\c (BPextS CS2 (form CS2)) = BPextS CS1 (form CS1) + eq1 ? (rp\sub\c⎻ (Ext⎽CS2 (oa_one (form CS2)))) + (Ext⎽CS1 (oa_one (form CS1))) }. definition rp' : ∀CS1,CS2. convergent_relation_pair CS1 CS2 → relation_pair CS1 CS2 ≝ λCS1,CS2,c. rp CS1 CS2 c. - coercion rp'. -definition convergent_relation_space_setoid: concrete_space → concrete_space → setoid1. +definition convergent_relation_space_setoid: concrete_space → concrete_space → setoid2. intros; constructor 1; [ apply (convergent_relation_pair c c1) | constructor 1; [ intros; apply (relation_pair_equality c c1 c2 c3); - | intros 1; apply refl1; - | intros 2; apply sym1; - | intros 3; apply trans1]] + | intros 1; apply refl2; + | intros 2; apply sym2; + | intros 3; apply trans2]] qed. -definition rp'': ∀CS1,CS2.convergent_relation_space_setoid CS1 CS2 → arrows1 BP CS1 CS2 ≝ - λCS1,CS2,c.rp ?? c. +definition rp'': ∀CS1,CS2.carr2 (convergent_relation_space_setoid CS1 CS2) → arrows2 BP CS1 CS2 ≝ + λCS1,CS2,c.rp ?? c. coercion rp''. +definition rp''': ∀CS1,CS2.Type_OF_setoid2 (convergent_relation_space_setoid CS1 CS2) → arrows2 BP CS1 CS2 ≝ + λCS1,CS2,c.rp ?? c. +coercion rp'''. + +definition rp'''': ∀CS1,CS2.Type_OF_setoid2 (convergent_relation_space_setoid CS1 CS2) → carr2 (arrows2 BP CS1 CS2) ≝ + λCS1,CS2,c.rp ?? c. +coercion rp''''. + definition convergent_relation_space_composition: ∀o1,o2,o3: concrete_space. - binary_morphism1 + binary_morphism2 (convergent_relation_space_setoid o1 o2) (convergent_relation_space_setoid o2 o3) (convergent_relation_space_setoid o1 o3). intros; constructor 1; - [ intros; whd in c c1 ⊢ %; + [ intros; whd in t t1 ⊢ %; constructor 1; - [ apply (fun1 ??? (comp1 BP ???)); [apply (bp o2) |*: apply rp; assumption] + [ apply (t1 ∘ t); | intros; - change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c); - change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? (? ? ? (? ? ? %) ?) ?))) - with (c1 \sub \f ∘ c \sub \f); - change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? ? (? ? ? (? ? ? %) ?)))) - with (c1 \sub \f ∘ c \sub \f); - apply (.= (extS_com ??????)); - apply (.= (†(respects_converges ?????))); - apply (.= (respects_converges ?????)); - apply (.= (†(((extS_com ??????) \sup -1)‡(extS_com ??????)\sup -1))); - apply refl1; - | change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c); - apply (.= (extS_com ??????)); - apply (.= (†(respects_all_covered ???))); - apply (.= respects_all_covered ???); - apply refl1] + change in ⊢ (? ? ? % ?) with (t\sub\c⎻ (t1\sub\c⎻ (Ext⎽o3 (b↓c)))); + unfold FunClass_1_OF_Type_OF_setoid21; + alias symbol "trans" = "trans1". + apply (.= († (respects_converges : ?))); + apply (respects_converges ?? t (t1\sub\f⎻ b) (t1\sub\f⎻ c)); + | change in ⊢ (? ? ? % ?) with (t\sub\c⎻ (t1\sub\c⎻ (Ext⎽o3 (oa_one (form o3))))); + unfold FunClass_1_OF_Type_OF_setoid21; + apply (.= (†(respects_all_covered :?))); + apply rule (respects_all_covered ?? t);] | intros; - change with (b ∘ a = b' ∘ a'); - change in H with (rp'' ?? a = rp'' ?? a'); - change in H1 with (rp'' ?? b = rp ?? b'); - apply (.= (H‡H1)); - apply refl1] + change with (b ∘ a = b' ∘ a'); + change in e with (rp'' ?? a = rp'' ?? a'); + change in e1 with (rp'' ?? b = rp ?? b'); + apply (e‡e1);] qed. -definition CSPA: category1. +definition CSPA: category2. constructor 1; [ apply concrete_space | apply convergent_relation_space_setoid | intro; constructor 1; - [ apply id1 - | intros; - unfold id; simplify; - apply (.= (equalset_extS_id_X_X ??)); - apply (.= (†((equalset_extS_id_X_X ??)\sup -1‡ - (equalset_extS_id_X_X ??)\sup -1))); - apply refl1; - | apply (.= (equalset_extS_id_X_X ??)); - apply refl1] + [ apply id2 + | intros; apply refl1; + | apply refl1] | apply convergent_relation_space_composition - | intros; simplify; + | intros; simplify; whd in a12 a23 a34; change with (a34 ∘ (a23 ∘ a12) = (a34 ∘ a23) ∘ a12); - apply (.= ASSOC1); - apply refl1 + apply rule ASSOC; | intros; simplify; - change with (a ∘ id1 ? o1 = a); - apply (.= id_neutral_right1 ????); - apply refl1 + change with (a ∘ id2 ? o1 = a); + apply (id_neutral_right2 : ?); | intros; simplify; - change with (id1 ? o2 ∘ a = a); - apply (.= id_neutral_left1 ????); - apply refl1] -qed. + change with (id2 ? o2 ∘ a = a); + apply (id_neutral_left2 : ?);] +qed. \ No newline at end of file