X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fo-saturations.ma;h=bb193508e913086258728c46e74a34317b5f9dfe;hb=05cfeb82d2624860e66941421a937f308d66cf33;hp=9b68972b42cd7aadf23784edd3129e3730706cb3;hpb=62e9e8296d172d6497f9ad29bad402fbad2014c3;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-saturations.ma b/helm/software/matita/contribs/formal_topology/overlap/o-saturations.ma index 9b68972b4..bb193508e 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-saturations.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-saturations.ma @@ -14,38 +14,24 @@ include "o-algebra.ma". -definition hint1: OA → Type ≝ λc:OA.carr (oa_P c). -coercion hint1. +definition is_o_saturation: ∀C:OA. C ⇒_1 C → CProp1 ≝ + λC:OA.λA:C ⇒_1 C.∀U,V. (U ≤ A V) =_1 (A U ≤ A V). -definition hint2: ∀C.hint1 C → carr1 ((λx.x) (setoid1_of_setoid (oa_P C))). -intros; assumption; -qed. -coercion hint2. - -alias symbol "eq" = "setoid1 eq". -definition is_saturation ≝ - λC:OA.λA:C → C. - ∀U,V. (U ≤ A V) = (A U ≤ A V). - -definition is_reduction ≝ - λC:OA.λJ:C → C. - ∀U,V. (J U ≤ V) = (J U ≤ J V). +definition is_o_reduction: ∀C:OA. C ⇒_1 C → CProp1 ≝ + λC:OA.λJ:C ⇒_1 C.∀U,V. (J U ≤ V) =_1 (J U ≤ J V). -theorem saturation_expansive: ∀C,A. is_saturation C A → ∀U. U ≤ A U. - intros; apply (fi ?? (H ??)); apply (oa_leq_refl C). +theorem o_saturation_expansive: ∀C,A. is_o_saturation C A → ∀U. U ≤ A U. + intros; apply (fi ?? (i ??)); apply (oa_leq_refl C). qed. -theorem saturation_monotone: - ∀C,A. is_saturation C A → - ∀U,V:C. U ≤ V → A U ≤ A V. - intros; apply (if ?? (H ??)); apply (oa_leq_trans C); - [apply V|3: apply saturation_expansive ] +theorem o_saturation_monotone: ∀C:OA.∀A:C ⇒_1 C. is_o_saturation C A → ∀U,V. U ≤ V → A U ≤ A V. + intros; apply (if ?? (i ??)); apply (oa_leq_trans C); + [apply V|3: apply o_saturation_expansive ] assumption. qed. -theorem saturation_idempotent: ∀C,A. is_saturation C A → ∀U. - eq (oa_P C) (A (A U)) (A U). +theorem o_saturation_idempotent: ∀C:OA.∀A:C ⇒_1 C. is_o_saturation C A → ∀U. A (A U) =_1 A U. intros; apply (oa_leq_antisym C); - [ apply (if ?? (H (A U) U)); apply (oa_leq_refl C). - | apply saturation_expansive; assumption] + [ apply (if ?? (i (A U) U)); apply (oa_leq_refl C). + | apply o_saturation_expansive; assumption] qed.