X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Frelations.ma;fp=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Frelations.ma;h=0000000000000000000000000000000000000000;hb=1ed4fe0f28d3b0b915387330cd722bfb80fb1063;hp=b1589a827fbc50717a08be48ec3fc2f2adf3eae2;hpb=05cfeb82d2624860e66941421a937f308d66cf33;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations.ma b/helm/software/matita/contribs/formal_topology/overlap/relations.ma deleted file mode 100644 index b1589a827..000000000 --- a/helm/software/matita/contribs/formal_topology/overlap/relations.ma +++ /dev/null @@ -1,299 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -include "subsets.ma". - -record binary_relation (A,B: SET) : Type1 ≝ - { satisfy:> binary_morphism1 A B CPROP }. - -notation < "hvbox (x \nbsp \natur term 90 r \nbsp y)" with precedence 45 for @{'satisfy $r $x $y}. -notation > "hvbox (x \natur term 90 r y)" with precedence 45 for @{'satisfy $r $x $y}. -interpretation "relation applied" 'satisfy r x y = (fun21 ??? (satisfy ?? r) x y). - -definition binary_relation_setoid: SET → SET → setoid1. - intros (A B); - constructor 1; - [ apply (binary_relation A B) - | constructor 1; - [ apply (λA,B.λr,r': binary_relation A B. ∀x,y. r x y ↔ r' x y) - | simplify; intros 3; split; intro; assumption - | simplify; intros 5; split; intro; - [ apply (fi ?? (f ??)) | apply (if ?? (f ??))] assumption - | simplify; intros 7; split; intro; - [ apply (if ?? (f1 ??)) | apply (fi ?? (f ??)) ] - [ apply (if ?? (f ??)) | apply (fi ?? (f1 ??)) ] - assumption]] -qed. - -definition binary_relation_of_binary_relation_setoid : - ∀A,B.binary_relation_setoid A B → binary_relation A B ≝ λA,B,c.c. -coercion binary_relation_of_binary_relation_setoid. - -definition composition: - ∀A,B,C. - (binary_relation_setoid A B) × (binary_relation_setoid B C) ⇒_1 (binary_relation_setoid A C). - intros; - constructor 1; - [ intros (R12 R23); - constructor 1; - constructor 1; - [ apply (λs1:A.λs3:C.∃s2:B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); - | intros; - split; intro; cases e2 (w H3); clear e2; exists; [1,3: apply w ] - [ apply (. (e^-1‡#)‡(#‡e1^-1)); assumption - | apply (. (e‡#)‡(#‡e1)); assumption]] - | intros 8; split; intro H2; simplify in H2 ⊢ %; - cases H2 (w H3); clear H2; exists [1,3: apply w] cases H3 (H2 H4); clear H3; - [ lapply (if ?? (e x w) H2) | lapply (fi ?? (e x w) H2) ] - [ lapply (if ?? (e1 w y) H4)| lapply (fi ?? (e1 w y) H4) ] - exists; try assumption; - split; assumption] -qed. - -definition REL: category1. - constructor 1; - [ apply setoid - | intros (T T1); apply (binary_relation_setoid T T1) - | intros; constructor 1; - constructor 1; unfold setoid1_of_setoid; simplify; - [ (* changes required to avoid universe inconsistency *) - change with (carr o → carr o → CProp); intros; apply (eq ? c c1) - | intros; split; intro; change in a a' b b' with (carr o); - change in e with (eq ? a a'); change in e1 with (eq ? b b'); - [ apply (.= (e ^ -1)); - apply (.= e2); - apply e1 - | apply (.= e); - apply (.= e2); - apply (e1 ^ -1)]] - | apply composition - | intros 9; - split; intro; - cases f (w H); clear f; cases H; clear H; - [cases f (w1 H); clear f | cases f1 (w1 H); clear f1] - cases H; clear H; - exists; try assumption; - split; try assumption; - exists; try assumption; - split; assumption - |6,7: intros 5; unfold composition; simplify; split; intro; - unfold setoid1_of_setoid in x y; simplify in x y; - [1,3: cases e (w H1); clear e; cases H1; clear H1; unfold; - [ apply (. (e : eq1 ? x w)‡#); assumption - | apply (. #‡(e : eq1 ? w y)^-1); assumption] - |2,4: exists; try assumption; split; - (* change required to avoid universe inconsistency *) - change in x with (carr o1); change in y with (carr o2); - first [apply refl | assumption]]] -qed. - -definition setoid_of_REL : objs1 REL → setoid ≝ λx.x. -coercion setoid_of_REL. - -definition binary_relation_setoid_of_arrow1_REL : - ∀P,Q. arrows1 REL P Q → binary_relation_setoid P Q ≝ λP,Q,x.x. -coercion binary_relation_setoid_of_arrow1_REL. - - -notation > "B ⇒_\r1 C" right associative with precedence 72 for @{'arrows1_REL $B $C}. -notation "B ⇒\sub (\r 1) C" right associative with precedence 72 for @{'arrows1_REL $B $C}. -interpretation "'arrows1_SET" 'arrows1_REL A B = (arrows1 REL A B). - - -definition full_subset: ∀s:REL. Ω^s. - apply (λs.{x | True}); - intros; simplify; split; intro; assumption. -qed. - -coercion full_subset. - -definition comprehension: ∀b:REL. (b ⇒_1. CPROP) → Ω^b. - apply (λb:REL. λP: b ⇒_1 CPROP. {x | P x}); - intros; simplify; - apply (.= †e); apply refl1. -qed. - -interpretation "subset comprehension" 'comprehension s p = - (comprehension s (mk_unary_morphism1 ?? p ?)). - -definition ext: ∀X,S:REL. (X ⇒_\r1 S) × S ⇒_1 (Ω^X). - intros (X S); constructor 1; - [ apply (λr:X ⇒_\r1 S.λf:S.{x ∈ X | x ♮r f}); intros; simplify; apply (.= (e‡#)); apply refl1 - | intros; simplify; split; intros; simplify; - [ change with (∀x. x ♮a b → x ♮a' b'); intros; - apply (. (#‡e1^-1)); whd in e; apply (if ?? (e ??)); assumption - | change with (∀x. x ♮a' b' → x ♮a b); intros; - apply (. (#‡e1)); whd in e; apply (fi ?? (e ??));assumption]] -qed. - -(* -definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. - (* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*) - intros (X S r); constructor 1; - [ intro F; constructor 1; constructor 1; - [ apply (λx. x ∈ X ∧ ∃a:S. a ∈ F ∧ x ♮r a); - | intros; split; intro; cases f (H1 H2); clear f; split; - [ apply (. (H‡#)); assumption - |3: apply (. (H\sup -1‡#)); assumption - |2,4: cases H2 (w H3); exists; [1,3: apply w] - [ apply (. (#‡(H‡#))); assumption - | apply (. (#‡(H \sup -1‡#))); assumption]]] - | intros; split; simplify; intros; cases f; cases H1; split; - [1,3: assumption - |2,4: exists; [1,3: apply w] - [ apply (. (#‡H)‡#); assumption - | apply (. (#‡H\sup -1)‡#); assumption]]] -qed. - -lemma equalset_extS_id_X_X: ∀o:REL.∀X.extS ?? (id1 ? o) X = X. - intros; - unfold extS; simplify; - split; simplify; - [ intros 2; change with (a ∈ X); - cases f; clear f; - cases H; clear H; - cases x; clear x; - change in f2 with (eq1 ? a w); - apply (. (f2\sup -1‡#)); - assumption - | intros 2; change in f with (a ∈ X); - split; - [ whd; exact I - | exists; [ apply a ] - split; - [ assumption - | change with (a = a); apply refl]]] -qed. - -lemma extS_com: ∀o1,o2,o3,c1,c2,S. extS o1 o3 (c2 ∘ c1) S = extS o1 o2 c1 (extS o2 o3 c2 S). - intros; unfold extS; simplify; split; intros; simplify; intros; - [ cases f (H1 H2); cases H2 (w H3); clear f H2; split; [assumption] - cases H3 (H4 H5); cases H5 (w1 H6); clear H3 H5; cases H6 (H7 H8); clear H6; - exists; [apply w1] split [2: assumption] constructor 1; [assumption] - exists; [apply w] split; assumption - | cases f (H1 H2); cases H2 (w H3); clear f H2; split; [assumption] - cases H3 (H4 H5); cases H4 (w1 H6); clear H3 H4; cases H6 (w2 H7); clear H6; - cases H7; clear H7; exists; [apply w2] split; [assumption] exists [apply w] split; - assumption] -qed. -*) - -(* the same as ⋄ for a basic pair *) -definition image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^U ⇒_1 Ω^V. - intros; constructor 1; - [ apply (λr:U ⇒_\r1 V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S }); - intros; simplify; split; intro; cases e1; exists [1,3: apply w] - [ apply (. (#‡e^-1)‡#); assumption - | apply (. (#‡e)‡#); assumption] - | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1^-1)); cases x; split; try assumption; - apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1)); cases x; split; try assumption; - apply (if ?? (e ^ -1 ??)); assumption]] -qed. - -(* the same as □ for a basic pair *) -definition minus_star_image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^U ⇒_1 Ω^V. - intros; constructor 1; - [ apply (λr:U ⇒_\r1 V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S}); - intros; simplify; split; intros; apply f; - [ apply (. #‡e); assumption - | apply (. #‡e ^ -1); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1^ -1); | apply (. #‡e1 )] - apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] -qed. - -(* the same as Rest for a basic pair *) -definition star_image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^V ⇒_1 Ω^U. - intros; constructor 1; - [ apply (λr:U ⇒_\r1 V.λS: Ω \sup V. {x | ∀y:V. x ♮r y → y ∈ S}); - intros; simplify; split; intros; apply f; - [ apply (. e ‡#); assumption - | apply (. e^ -1‡#); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1 ^ -1); | apply (. #‡e1)] - apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] -qed. - -(* the same as Ext for a basic pair *) -definition minus_image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^V ⇒_1 Ω^U. - intros; constructor 1; - [ apply (λr:U ⇒_\r1 V.λS: Ω \sup V. {x | (*∃x:U. x ♮r y ∧ x ∈ S*) - exT ? (λy:V.x ♮r y ∧ y ∈ S) }); - intros; simplify; split; intro; cases e1; exists [1,3: apply w] - [ apply (. (e ^ -1‡#)‡#); assumption - | apply (. (e‡#)‡#); assumption] - | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; - apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1)); cases x; split; try assumption; - apply (if ?? (e ^ -1 ??)); assumption]] -qed. - -(* minus_image is the same as ext *) - -theorem image_id: ∀o,U. image o o (id1 REL o) U = U. - intros; unfold image; simplify; split; simplify; intros; - [ change with (a ∈ U); - cases e; cases x; change in f with (eq1 ? w a); apply (. f^-1‡#); assumption - | change in f with (a ∈ U); - exists; [apply a] split; [ change with (a = a); apply refl1 | assumption]] -qed. - -theorem minus_star_image_id: ∀o,U. minus_star_image o o (id1 REL o) U = U. - intros; unfold minus_star_image; simplify; split; simplify; intros; - [ change with (a ∈ U); apply f; change with (a=a); apply refl1 - | change in f1 with (eq1 ? x a); apply (. f1‡#); apply f] -qed. - -alias symbol "compose" (instance 2) = "category1 composition". -theorem image_comp: ∀A,B,C,r,s,X. image A C (r ∘ s) X = image B C r (image A B s X). - intros; unfold image; simplify; split; simplify; intros; cases e; clear e; cases x; - clear x; [ cases f; clear f; | cases f1; clear f1 ] - exists; try assumption; cases x; clear x; split; try assumption; - exists; try assumption; split; assumption. -qed. - -theorem minus_star_image_comp: - ∀A,B,C,r,s,X. - minus_star_image A C (r ∘ s) X = minus_star_image B C r (minus_star_image A B s X). - intros; unfold minus_star_image; simplify; split; simplify; intros; whd; intros; - [ apply f; exists; try assumption; split; assumption - | change with (x ∈ X); cases f1; cases x1; apply f; assumption] -qed. - -(* -(*CSC: unused! *) -theorem ext_comp: - ∀o1,o2,o3: REL. - ∀a: arrows1 ? o1 o2. - ∀b: arrows1 ? o2 o3. - ∀x. ext ?? (b∘a) x = extS ?? a (ext ?? b x). - intros; - unfold ext; unfold extS; simplify; split; intro; simplify; intros; - cases f; clear f; split; try assumption; - [ cases f2; clear f2; cases x1; clear x1; exists; [apply w] split; - [1: split] assumption; - | cases H; clear H; cases x1; clear x1; exists [apply w]; split; - [2: cases f] assumption] -qed. - -theorem extS_singleton: - ∀o1,o2.∀a:arrows1 ? o1 o2.∀x.extS o1 o2 a (singleton o2 x) = ext o1 o2 a x. - intros; unfold extS; unfold ext; unfold singleton; simplify; - split; intros 2; simplify; cases f; split; try assumption; - [ cases H; cases x1; change in f2 with (eq1 ? x w); apply (. #‡f2 \sup -1); - assumption - | exists; try assumption; split; try assumption; change with (x = x); apply refl] -qed. -*)