X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Frelations.ma;h=307797566dce8ea8280697246208f44e943a6fbf;hb=711b00a770c30056019a2b7204903e7fb5981940;hp=88af2926367242ba18372fd91060b8af9e81fe8b;hpb=32d2bb73b2ed863c988c61ce9d15404bb9d800ad;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations.ma b/helm/software/matita/contribs/formal_topology/overlap/relations.ma index 88af29263..307797566 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations.ma @@ -21,7 +21,7 @@ notation < "hvbox (x \nbsp \natur term 90 r \nbsp y)" with precedence 45 for @{ notation > "hvbox (x \natur term 90 r y)" with precedence 45 for @{'satisfy $r $x $y}. interpretation "relation applied" 'satisfy r x y = (fun21 ___ (satisfy __ r) x y). -definition binary_relation_setoid: SET → SET → SET1. +definition binary_relation_setoid: SET → SET → setoid1. intros (A B); constructor 1; [ apply (binary_relation A B) @@ -29,13 +29,17 @@ definition binary_relation_setoid: SET → SET → SET1. [ apply (λA,B.λr,r': binary_relation A B. ∀x,y. r x y ↔ r' x y) | simplify; intros 3; split; intro; assumption | simplify; intros 5; split; intro; - [ apply (fi ?? (H ??)) | apply (if ?? (H ??))] assumption + [ apply (fi ?? (f ??)) | apply (if ?? (f ??))] assumption | simplify; intros 7; split; intro; - [ apply (if ?? (H1 ??)) | apply (fi ?? (H ??)) ] - [ apply (if ?? (H ??)) | apply (fi ?? (H1 ??)) ] + [ apply (if ?? (f1 ??)) | apply (fi ?? (f ??)) ] + [ apply (if ?? (f ??)) | apply (fi ?? (f1 ??)) ] assumption]] qed. +definition binary_relation_of_binary_relation_setoid : + ∀A,B.binary_relation_setoid A B → binary_relation A B ≝ λA,B,c.c. +coercion binary_relation_of_binary_relation_setoid. + definition composition: ∀A,B,C. binary_morphism1 (binary_relation_setoid A B) (binary_relation_setoid B C) (binary_relation_setoid A C). @@ -44,13 +48,11 @@ definition composition: [ intros (R12 R23); constructor 1; constructor 1; - [ alias symbol "and" = "and_morphism". - (* carr to avoid universe inconsistency *) - apply (λs1:carr A.λs3:carr C.∃s2:carr B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); + [ apply (λs1:A.λs3:C.∃s2:B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); | intros; - split; intro; cases H (w H3); clear H; exists; [1,3: apply w ] - [ apply (. (e‡#)‡(#‡e1)); assumption - | apply (. ((e \sup -1)‡#)‡(#‡(e1 \sup -1))); assumption]] + split; intro; cases e2 (w H3); clear e2; exists; [1,3: apply w ] + [ apply (. (e^-1‡#)‡(#‡e1^-1)); assumption + | apply (. (e‡#)‡(#‡e1)); assumption]] | intros 8; split; intro H2; simplify in H2 ⊢ %; cases H2 (w H3); clear H2; exists [1,3: apply w] cases H3 (H2 H4); clear H3; [ lapply (if ?? (e x w) H2) | lapply (fi ?? (e x w) H2) ] @@ -87,15 +89,22 @@ definition REL: category1. split; assumption |6,7: intros 5; unfold composition; simplify; split; intro; unfold setoid1_of_setoid in x y; simplify in x y; - [1,3: cases H (w H1); clear H; cases H1; clear H1; unfold; - [ apply (. (e ^ -1 : eq1 ? w x)‡#); assumption - | apply (. #‡(e : eq1 ? w y)); assumption] + [1,3: cases e (w H1); clear e; cases H1; clear H1; unfold; + [ apply (. (e : eq1 ? x w)‡#); assumption + | apply (. #‡(e : eq1 ? w y)^-1); assumption] |2,4: exists; try assumption; split; (* change required to avoid universe inconsistency *) change in x with (carr o1); change in y with (carr o2); first [apply refl | assumption]]] qed. +definition setoid_of_REL : objs1 REL → setoid ≝ λx.x. +coercion setoid_of_REL. + +definition binary_relation_setoid_of_arrow1_REL : + ∀P,Q. arrows1 REL P Q → binary_relation_setoid P Q ≝ λP,Q,x.x. +coercion binary_relation_setoid_of_arrow1_REL. + definition full_subset: ∀s:REL. Ω \sup s. apply (λs.{x | True}); intros; simplify; split; intro; assumption. @@ -103,26 +112,27 @@ qed. coercion full_subset. -definition setoid1_of_REL: REL → setoid ≝ λS. S. - -coercion setoid1_of_REL. - -definition comprehension: ∀b:REL. (b ⇒ CPROP) → Ω \sup b. - apply (λb:REL. λP: b ⇒ CPROP. {x | x ∈ b ∧ P x}); - intros; simplify; apply (.= (H‡#)‡(†H)); apply refl1. +definition comprehension: ∀b:REL. (unary_morphism1 b CPROP) → Ω \sup b. + apply (λb:REL. λP: b ⇒ CPROP. {x | P x}); + intros; simplify; + alias symbol "trans" = "trans1". + alias symbol "prop1" = "prop11". + apply (.= †e); apply refl1. qed. interpretation "subset comprehension" 'comprehension s p = - (comprehension s (mk_unary_morphism __ p _)). + (comprehension s (mk_unary_morphism1 __ p _)). definition ext: ∀X,S:REL. binary_morphism1 (arrows1 ? X S) S (Ω \sup X). - apply (λX,S.mk_binary_morphism1 ??? (λr:arrows1 ? X S.λf:S.{x ∈ X | x ♮r f}) ?); - [ intros; simplify; apply (.= (H‡#)); apply refl1 - | intros; simplify; split; intros; simplify; intros; cases f; split; try assumption; - [ apply (. (#‡H1)); whd in H; apply (if ?? (H ??)); assumption - | apply (. (#‡H1\sup -1)); whd in H; apply (fi ?? (H ??));assumption]] + apply (λX,S.mk_binary_morphism1 ??? (λr:arrows1 REL X S.λf:S.{x ∈ X | x ♮r f}) ?); + [ intros; simplify; apply (.= (e‡#)); apply refl1 + | intros; simplify; split; intros; simplify; + [ change with (∀x. x ♮a b → x ♮a' b'); intros; + apply (. (#‡e1^-1)); whd in e; apply (if ?? (e ??)); assumption + | change with (∀x. x ♮a' b' → x ♮a b); intros; + apply (. (#‡e1)); whd in e; apply (fi ?? (e ??));assumption]] qed. - +(* definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. (* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*) intros (X S r); constructor 1; @@ -172,32 +182,60 @@ lemma extS_com: ∀o1,o2,o3,c1,c2,S. extS o1 o3 (c2 ∘ c1) S = extS o1 o2 c1 (e cases H7; clear H7; exists; [apply w2] split; [assumption] exists [apply w] split; assumption] qed. +*) (* the same as ⋄ for a basic pair *) definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S}); - intros; simplify; split; intro; cases H1; exists [1,3: apply w] - [ apply (. (#‡H)‡#); assumption - | apply (. (#‡H \sup -1)‡#); assumption] - | intros; split; simplify; intros; cases H2; exists [1,3: apply w] - [ apply (. #‡(#‡H1)); cases x; split; try assumption; - apply (if ?? (H ??)); assumption - | apply (. #‡(#‡H1 \sup -1)); cases x; split; try assumption; - apply (if ?? (H \sup -1 ??)); assumption]] + [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S }); + intros; simplify; split; intro; cases e1; exists [1,3: apply w] + [ apply (. (#‡e^-1)‡#); assumption + | apply (. (#‡e)‡#); assumption] + | intros; split; simplify; intros; cases e2; exists [1,3: apply w] + [ apply (. #‡(#‡e1^-1)); cases x; split; try assumption; + apply (if ?? (e ??)); assumption + | apply (. #‡(#‡e1)); cases x; split; try assumption; + apply (if ?? (e ^ -1 ??)); assumption]] qed. (* the same as □ for a basic pair *) definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). intros; constructor 1; [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S}); - intros; simplify; split; intros; apply H1; - [ apply (. #‡H \sup -1); assumption - | apply (. #‡H); assumption] - | intros; split; simplify; intros; [ apply (. #‡H1); | apply (. #‡H1 \sup -1)] - apply H2; [ apply (if ?? (H \sup -1 ??)); | apply (if ?? (H ??)) ] assumption] + intros; simplify; split; intros; apply f; + [ apply (. #‡e); assumption + | apply (. #‡e ^ -1); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1^ -1); | apply (. #‡e1 )] + apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] qed. +(* the same as Rest for a basic pair *) +definition star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) (Ω \sup U). + intros; constructor 1; + [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | ∀y:V. x ♮r y → y ∈ S}); + intros; simplify; split; intros; apply f; + [ apply (. e ‡#); assumption + | apply (. e^ -1‡#); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1 ^ -1); | apply (. #‡e1)] + apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] +qed. + +(* the same as Ext for a basic pair *) +definition minus_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) (Ω \sup U). + intros; constructor 1; + [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | (*∃x:U. x ♮r y ∧ x ∈ S*) + exT ? (λy:V.x ♮r y ∧ y ∈ S) }); + intros; simplify; split; intro; cases e1; exists [1,3: apply w] + [ apply (. (e ^ -1‡#)‡#); assumption + | apply (. (e‡#)‡#); assumption] + | intros; split; simplify; intros; cases e2; exists [1,3: apply w] + [ apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; + apply (if ?? (e ??)); assumption + | apply (. #‡(#‡e1)); cases x; split; try assumption; + apply (if ?? (e ^ -1 ??)); assumption]] +qed. + +(* (* minus_image is the same as ext *) theorem image_id: ∀o,U. image o o (id1 REL o) U = U. @@ -251,4 +289,5 @@ theorem extS_singleton: [ cases H; cases x1; change in f2 with (eq1 ? x w); apply (. #‡f2 \sup -1); assumption | exists; try assumption; split; try assumption; change with (x = x); apply refl] -qed. \ No newline at end of file +qed. +*)