X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Frelations.ma;h=662c7d048d5cf254efed08b4e85bcf10d58c6406;hb=3cf6181bded05eb63140d1b2ba4f2f5791a73b48;hp=ed8b83bcbd1f3b17538cfe595ccf37d05f02efb0;hpb=8abe6fae9e3c76b7d94090e3373204890e0be11c;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations.ma b/helm/software/matita/contribs/formal_topology/overlap/relations.ma index ed8b83bcb..662c7d048 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations.ma @@ -19,9 +19,9 @@ record binary_relation (A,B: SET) : Type1 ≝ notation < "hvbox (x \nbsp \natur term 90 r \nbsp y)" with precedence 45 for @{'satisfy $r $x $y}. notation > "hvbox (x \natur term 90 r y)" with precedence 45 for @{'satisfy $r $x $y}. -interpretation "relation applied" 'satisfy r x y = (fun21 ___ (satisfy __ r) x y). +interpretation "relation applied" 'satisfy r x y = (fun21 ??? (satisfy ?? r) x y). -definition binary_relation_setoid: SET → SET → SET1. +definition binary_relation_setoid: SET → SET → setoid1. intros (A B); constructor 1; [ apply (binary_relation A B) @@ -36,6 +36,10 @@ definition binary_relation_setoid: SET → SET → SET1. assumption]] qed. +definition binary_relation_of_binary_relation_setoid : + ∀A,B.binary_relation_setoid A B → binary_relation A B ≝ λA,B,c.c. +coercion binary_relation_of_binary_relation_setoid. + definition composition: ∀A,B,C. binary_morphism1 (binary_relation_setoid A B) (binary_relation_setoid B C) (binary_relation_setoid A C). @@ -44,13 +48,11 @@ definition composition: [ intros (R12 R23); constructor 1; constructor 1; - [ alias symbol "and" = "and_morphism". - (* carr to avoid universe inconsistency *) - apply (λs1:carr A.λs3:carr C.∃s2:carr B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); + [ apply (λs1:A.λs3:C.∃s2:B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); | intros; split; intro; cases e2 (w H3); clear e2; exists; [1,3: apply w ] - [ apply (. (e‡#)‡(#‡e1)); assumption - | apply (. ((e \sup -1)‡#)‡(#‡(e1 \sup -1))); assumption]] + [ apply (. (e^-1‡#)‡(#‡e1^-1)); assumption + | apply (. (e‡#)‡(#‡e1)); assumption]] | intros 8; split; intro H2; simplify in H2 ⊢ %; cases H2 (w H3); clear H2; exists [1,3: apply w] cases H3 (H2 H4); clear H3; [ lapply (if ?? (e x w) H2) | lapply (fi ?? (e x w) H2) ] @@ -88,15 +90,21 @@ definition REL: category1. |6,7: intros 5; unfold composition; simplify; split; intro; unfold setoid1_of_setoid in x y; simplify in x y; [1,3: cases e (w H1); clear e; cases H1; clear H1; unfold; - [ apply (. (e ^ -1 : eq1 ? w x)‡#); assumption - | apply (. #‡(e : eq1 ? w y)); assumption] + [ apply (. (e : eq1 ? x w)‡#); assumption + | apply (. #‡(e : eq1 ? w y)^-1); assumption] |2,4: exists; try assumption; split; (* change required to avoid universe inconsistency *) change in x with (carr o1); change in y with (carr o2); first [apply refl | assumption]]] qed. -(* +definition setoid_of_REL : objs1 REL → setoid ≝ λx.x. +coercion setoid_of_REL. + +definition binary_relation_setoid_of_arrow1_REL : + ∀P,Q. arrows1 REL P Q → binary_relation_setoid P Q ≝ λP,Q,x.x. +coercion binary_relation_setoid_of_arrow1_REL. + definition full_subset: ∀s:REL. Ω \sup s. apply (λs.{x | True}); intros; simplify; split; intro; assumption. @@ -104,26 +112,27 @@ qed. coercion full_subset. -definition setoid1_of_REL: REL → setoid ≝ λS. S. - -coercion setoid1_of_REL. - -definition comprehension: ∀b:REL. (b ⇒ CPROP) → Ω \sup b. - apply (λb:REL. λP: b ⇒ CPROP. {x | x ∈ b ∧ P x}); - intros; simplify; apply (.= (H‡#)‡(†H)); apply refl1. +definition comprehension: ∀b:REL. (unary_morphism1 b CPROP) → Ω \sup b. + apply (λb:REL. λP: b ⇒ CPROP. {x | P x}); + intros; simplify; + alias symbol "trans" = "trans1". + alias symbol "prop1" = "prop11". + apply (.= †e); apply refl1. qed. interpretation "subset comprehension" 'comprehension s p = - (comprehension s (mk_unary_morphism __ p _)). + (comprehension s (mk_unary_morphism1 ?? p ?)). definition ext: ∀X,S:REL. binary_morphism1 (arrows1 ? X S) S (Ω \sup X). - apply (λX,S.mk_binary_morphism1 ??? (λr:arrows1 ? X S.λf:S.{x ∈ X | x ♮r f}) ?); - [ intros; simplify; apply (.= (H‡#)); apply refl1 - | intros; simplify; split; intros; simplify; intros; cases f; split; try assumption; - [ apply (. (#‡H1)); whd in H; apply (if ?? (H ??)); assumption - | apply (. (#‡H1\sup -1)); whd in H; apply (fi ?? (H ??));assumption]] + apply (λX,S.mk_binary_morphism1 ??? (λr:arrows1 REL X S.λf:S.{x ∈ X | x ♮r f}) ?); + [ intros; simplify; apply (.= (e‡#)); apply refl1 + | intros; simplify; split; intros; simplify; + [ change with (∀x. x ♮a b → x ♮a' b'); intros; + apply (. (#‡e1^-1)); whd in e; apply (if ?? (e ??)); assumption + | change with (∀x. x ♮a' b' → x ♮a b); intros; + apply (. (#‡e1)); whd in e; apply (fi ?? (e ??));assumption]] qed. - +(* definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. (* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*) intros (X S r); constructor 1; @@ -178,36 +187,36 @@ qed. (* the same as ⋄ for a basic pair *) definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:carr U. x ♮r y ∧ x ∈ S }); + [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S }); intros; simplify; split; intro; cases e1; exists [1,3: apply w] - [ apply (. (#‡e)‡#); assumption - | apply (. (#‡e ^ -1)‡#); assumption] + [ apply (. (#‡e^-1)‡#); assumption + | apply (. (#‡e)‡#); assumption] | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1)); cases x; split; try assumption; + [ apply (. #‡(#‡e1^-1)); cases x; split; try assumption; apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; + | apply (. #‡(#‡e1)); cases x; split; try assumption; apply (if ?? (e ^ -1 ??)); assumption]] qed. (* the same as □ for a basic pair *) definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:carr U. x ♮r y → x ∈ S}); + [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S}); intros; simplify; split; intros; apply f; - [ apply (. #‡e ^ -1); assumption - | apply (. #‡e); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)] + [ apply (. #‡e); assumption + | apply (. #‡e ^ -1); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1^ -1); | apply (. #‡e1 )] apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] qed. (* the same as Rest for a basic pair *) definition star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) (Ω \sup U). intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | ∀y:carr V. x ♮r y → y ∈ S}); + [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | ∀y:V. x ♮r y → y ∈ S}); intros; simplify; split; intros; apply f; - [ apply (. e ^ -1‡#); assumption - | apply (. e‡#); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)] + [ apply (. e ‡#); assumption + | apply (. e^ -1‡#); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1 ^ -1); | apply (. #‡e1)] apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] qed. @@ -215,14 +224,14 @@ qed. definition minus_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) (Ω \sup U). intros; constructor 1; [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | (*∃x:U. x ♮r y ∧ x ∈ S*) - exT ? (λy:carr V.x ♮r y ∧ y ∈ S) }); + exT ? (λy:V.x ♮r y ∧ y ∈ S) }); intros; simplify; split; intro; cases e1; exists [1,3: apply w] - [ apply (. (e‡#)‡#); assumption - | apply (. (e ^ -1‡#)‡#); assumption] + [ apply (. (e ^ -1‡#)‡#); assumption + | apply (. (e‡#)‡#); assumption] | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1)); cases x; split; try assumption; + [ apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; + | apply (. #‡(#‡e1)); cases x; split; try assumption; apply (if ?? (e ^ -1 ??)); assumption]] qed. @@ -282,43 +291,3 @@ theorem extS_singleton: | exists; try assumption; split; try assumption; change with (x = x); apply refl] qed. *) - -include "o-algebra.ma". - -definition orelation_of_relation: ∀o1,o2:REL. arrows1 ? o1 o2 → ORelation (SUBSETS o1) (SUBSETS o2). - intros; - constructor 1; - [ constructor 1; - [ apply (λU.image ?? t U); - | intros; apply (#‡e); ] - | constructor 1; - [ apply (λU.minus_star_image ?? t U); - | intros; apply (#‡e); ] - | constructor 1; - [ apply (λU.star_image ?? t U); - | intros; apply (#‡e); ] - | constructor 1; - [ apply (λU.minus_image ?? t U); - | intros; apply (#‡e); ] - | intros; split; intro; - [ change in f with (∀a. a ∈ image ?? t p → a ∈ q); - change with (∀a:o1. a ∈ p → a ∈ star_image ?? t q); - intros 4; apply f; exists; [apply a] split; assumption; - | change in f with (∀a:o1. a ∈ p → a ∈ star_image ?? t q); - change with (∀a. a ∈ image ?? t p → a ∈ q); - intros; cases f1; cases x; clear f1 x; apply (f ? f3); assumption; ] - | intros; split; intro; - [ change in f with (∀a. a ∈ minus_image ?? t p → a ∈ q); - change with (∀a:o2. a ∈ p → a ∈ minus_star_image ?? t q); - intros 4; apply f; exists; [apply a] split; assumption; - | change in f with (∀a:o2. a ∈ p → a ∈ minus_star_image ?? t q); - change with (∀a. a ∈ minus_image ?? t p → a ∈ q); - intros; cases f1; cases x; clear f1 x; apply (f ? f3); assumption; ] - | intros; split; intro; cases f; clear f; - [ cases x; cases x2; clear x x2; exists; [apply w1] - [ assumption; - | exists; [apply w] split; assumption] - | cases x1; cases x2; clear x1 x2; exists; [apply w1] - [ exists; [apply w] split; assumption; - | assumption; ]]] -qed.