X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Frelations.ma;h=b1589a827fbc50717a08be48ec3fc2f2adf3eae2;hb=82b1a205fdf9bc2c8029296ebe94c5667798845b;hp=c4502f3d080b61874360cfb4e650bde1f3b99694;hpb=49045bfd9b3038ce30a1911e2345f949ed38ec8a;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations.ma b/helm/software/matita/contribs/formal_topology/overlap/relations.ma index c4502f3d0..b1589a827 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations.ma @@ -19,9 +19,9 @@ record binary_relation (A,B: SET) : Type1 ≝ notation < "hvbox (x \nbsp \natur term 90 r \nbsp y)" with precedence 45 for @{'satisfy $r $x $y}. notation > "hvbox (x \natur term 90 r y)" with precedence 45 for @{'satisfy $r $x $y}. -interpretation "relation applied" 'satisfy r x y = (fun21 ___ (satisfy __ r) x y). +interpretation "relation applied" 'satisfy r x y = (fun21 ??? (satisfy ?? r) x y). -definition binary_relation_setoid: SET → SET → SET1. +definition binary_relation_setoid: SET → SET → setoid1. intros (A B); constructor 1; [ apply (binary_relation A B) @@ -36,21 +36,23 @@ definition binary_relation_setoid: SET → SET → SET1. assumption]] qed. +definition binary_relation_of_binary_relation_setoid : + ∀A,B.binary_relation_setoid A B → binary_relation A B ≝ λA,B,c.c. +coercion binary_relation_of_binary_relation_setoid. + definition composition: ∀A,B,C. - binary_morphism1 (binary_relation_setoid A B) (binary_relation_setoid B C) (binary_relation_setoid A C). + (binary_relation_setoid A B) × (binary_relation_setoid B C) ⇒_1 (binary_relation_setoid A C). intros; constructor 1; [ intros (R12 R23); constructor 1; constructor 1; - [ alias symbol "and" = "and_morphism". - (* carr to avoid universe inconsistency *) - apply (λs1:carr A.λs3:carr C.∃s2:carr B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); + [ apply (λs1:A.λs3:C.∃s2:B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); | intros; split; intro; cases e2 (w H3); clear e2; exists; [1,3: apply w ] - [ apply (. (e‡#)‡(#‡e1)); assumption - | apply (. ((e \sup -1)‡#)‡(#‡(e1 \sup -1))); assumption]] + [ apply (. (e^-1‡#)‡(#‡e1^-1)); assumption + | apply (. (e‡#)‡(#‡e1)); assumption]] | intros 8; split; intro H2; simplify in H2 ⊢ %; cases H2 (w H3); clear H2; exists [1,3: apply w] cases H3 (H2 H4); clear H3; [ lapply (if ?? (e x w) H2) | lapply (fi ?? (e x w) H2) ] @@ -88,50 +90,53 @@ definition REL: category1. |6,7: intros 5; unfold composition; simplify; split; intro; unfold setoid1_of_setoid in x y; simplify in x y; [1,3: cases e (w H1); clear e; cases H1; clear H1; unfold; - [ apply (. (e ^ -1 : eq1 ? w x)‡#); assumption - | apply (. #‡(e : eq1 ? w y)); assumption] + [ apply (. (e : eq1 ? x w)‡#); assumption + | apply (. #‡(e : eq1 ? w y)^-1); assumption] |2,4: exists; try assumption; split; (* change required to avoid universe inconsistency *) change in x with (carr o1); change in y with (carr o2); first [apply refl | assumption]]] qed. -definition full_subset: ∀s:REL. Ω \sup s. +definition setoid_of_REL : objs1 REL → setoid ≝ λx.x. +coercion setoid_of_REL. + +definition binary_relation_setoid_of_arrow1_REL : + ∀P,Q. arrows1 REL P Q → binary_relation_setoid P Q ≝ λP,Q,x.x. +coercion binary_relation_setoid_of_arrow1_REL. + + +notation > "B ⇒_\r1 C" right associative with precedence 72 for @{'arrows1_REL $B $C}. +notation "B ⇒\sub (\r 1) C" right associative with precedence 72 for @{'arrows1_REL $B $C}. +interpretation "'arrows1_SET" 'arrows1_REL A B = (arrows1 REL A B). + + +definition full_subset: ∀s:REL. Ω^s. apply (λs.{x | True}); intros; simplify; split; intro; assumption. qed. coercion full_subset. -definition setoid1_of_REL: REL → setoid ≝ λS. S. -coercion setoid1_of_REL. - -lemma Type_OF_setoid1_of_REL: ∀o1:Type_OF_category1 REL. Type_OF_objs1 o1 → Type_OF_setoid1 ?(*(setoid1_of_SET o1)*). - [ apply (setoid1_of_SET o1); - | intros; apply t;] -qed. -coercion Type_OF_setoid1_of_REL. - -definition comprehension: ∀b:REL. (unary_morphism1 b CPROP) → Ω \sup b. - apply (λb:REL. λP: b ⇒ CPROP. {x | P x}); +definition comprehension: ∀b:REL. (b ⇒_1. CPROP) → Ω^b. + apply (λb:REL. λP: b ⇒_1 CPROP. {x | P x}); intros; simplify; - alias symbol "trans" = "trans1". - alias symbol "prop1" = "prop11". apply (.= †e); apply refl1. qed. interpretation "subset comprehension" 'comprehension s p = - (comprehension s (mk_unary_morphism1 __ p _)). + (comprehension s (mk_unary_morphism1 ?? p ?)). -definition ext: ∀X,S:REL. binary_morphism1 (arrows1 ? X S) S (Ω \sup X). - apply (λX,S.mk_binary_morphism1 ??? (λr:arrows1 REL X S.λf:S.{x ∈ X | x ♮r f}) ?); - [ intros; simplify; apply (.= (e‡#)); apply refl1 +definition ext: ∀X,S:REL. (X ⇒_\r1 S) × S ⇒_1 (Ω^X). + intros (X S); constructor 1; + [ apply (λr:X ⇒_\r1 S.λf:S.{x ∈ X | x ♮r f}); intros; simplify; apply (.= (e‡#)); apply refl1 | intros; simplify; split; intros; simplify; [ change with (∀x. x ♮a b → x ♮a' b'); intros; - apply (. (#‡e1)); whd in e; apply (if ?? (e ??)); assumption + apply (. (#‡e1^-1)); whd in e; apply (if ?? (e ??)); assumption | change with (∀x. x ♮a' b' → x ♮a b); intros; - apply (. (#‡e1\sup -1)); whd in e; apply (fi ?? (e ??));assumption]] + apply (. (#‡e1)); whd in e; apply (fi ?? (e ??));assumption]] qed. + (* definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. (* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*) @@ -185,75 +190,75 @@ qed. *) (* the same as ⋄ for a basic pair *) -definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). +definition image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^U ⇒_1 Ω^V. intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:carr U. x ♮r y ∧ x ∈ S }); + [ apply (λr:U ⇒_\r1 V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S }); intros; simplify; split; intro; cases e1; exists [1,3: apply w] - [ apply (. (#‡e)‡#); assumption - | apply (. (#‡e ^ -1)‡#); assumption] + [ apply (. (#‡e^-1)‡#); assumption + | apply (. (#‡e)‡#); assumption] | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1)); cases x; split; try assumption; + [ apply (. #‡(#‡e1^-1)); cases x; split; try assumption; apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; + | apply (. #‡(#‡e1)); cases x; split; try assumption; apply (if ?? (e ^ -1 ??)); assumption]] qed. (* the same as □ for a basic pair *) -definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). +definition minus_star_image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^U ⇒_1 Ω^V. intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:carr U. x ♮r y → x ∈ S}); + [ apply (λr:U ⇒_\r1 V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S}); intros; simplify; split; intros; apply f; - [ apply (. #‡e ^ -1); assumption - | apply (. #‡e); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)] + [ apply (. #‡e); assumption + | apply (. #‡e ^ -1); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1^ -1); | apply (. #‡e1 )] apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] qed. (* the same as Rest for a basic pair *) -definition star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) (Ω \sup U). +definition star_image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^V ⇒_1 Ω^U. intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | ∀y:carr V. x ♮r y → y ∈ S}); + [ apply (λr:U ⇒_\r1 V.λS: Ω \sup V. {x | ∀y:V. x ♮r y → y ∈ S}); intros; simplify; split; intros; apply f; - [ apply (. e ^ -1‡#); assumption - | apply (. e‡#); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)] + [ apply (. e ‡#); assumption + | apply (. e^ -1‡#); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1 ^ -1); | apply (. #‡e1)] apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] qed. (* the same as Ext for a basic pair *) -definition minus_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) (Ω \sup U). +definition minus_image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^V ⇒_1 Ω^U. intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | (*∃x:U. x ♮r y ∧ x ∈ S*) - exT ? (λy:carr V.x ♮r y ∧ y ∈ S) }); + [ apply (λr:U ⇒_\r1 V.λS: Ω \sup V. {x | (*∃x:U. x ♮r y ∧ x ∈ S*) + exT ? (λy:V.x ♮r y ∧ y ∈ S) }); intros; simplify; split; intro; cases e1; exists [1,3: apply w] - [ apply (. (e‡#)‡#); assumption - | apply (. (e ^ -1‡#)‡#); assumption] + [ apply (. (e ^ -1‡#)‡#); assumption + | apply (. (e‡#)‡#); assumption] | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1)); cases x; split; try assumption; + [ apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; + | apply (. #‡(#‡e1)); cases x; split; try assumption; apply (if ?? (e ^ -1 ??)); assumption]] qed. -(* (* minus_image is the same as ext *) theorem image_id: ∀o,U. image o o (id1 REL o) U = U. intros; unfold image; simplify; split; simplify; intros; [ change with (a ∈ U); - cases H; cases x; change in f with (eq1 ? w a); apply (. f‡#); assumption + cases e; cases x; change in f with (eq1 ? w a); apply (. f^-1‡#); assumption | change in f with (a ∈ U); - exists; [apply a] split; [ change with (a = a); apply refl | assumption]] + exists; [apply a] split; [ change with (a = a); apply refl1 | assumption]] qed. theorem minus_star_image_id: ∀o,U. minus_star_image o o (id1 REL o) U = U. intros; unfold minus_star_image; simplify; split; simplify; intros; - [ change with (a ∈ U); apply H; change with (a=a); apply refl - | change in f1 with (eq1 ? x a); apply (. f1 \sup -1‡#); apply f] + [ change with (a ∈ U); apply f; change with (a=a); apply refl1 + | change in f1 with (eq1 ? x a); apply (. f1‡#); apply f] qed. +alias symbol "compose" (instance 2) = "category1 composition". theorem image_comp: ∀A,B,C,r,s,X. image A C (r ∘ s) X = image B C r (image A B s X). - intros; unfold image; simplify; split; simplify; intros; cases H; clear H; cases x; + intros; unfold image; simplify; split; simplify; intros; cases e; clear e; cases x; clear x; [ cases f; clear f; | cases f1; clear f1 ] exists; try assumption; cases x; clear x; split; try assumption; exists; try assumption; split; assumption. @@ -263,10 +268,11 @@ theorem minus_star_image_comp: ∀A,B,C,r,s,X. minus_star_image A C (r ∘ s) X = minus_star_image B C r (minus_star_image A B s X). intros; unfold minus_star_image; simplify; split; simplify; intros; whd; intros; - [ apply H; exists; try assumption; split; assumption - | change with (x ∈ X); cases f; cases x1; apply H; assumption] + [ apply f; exists; try assumption; split; assumption + | change with (x ∈ X); cases f1; cases x1; apply f; assumption] qed. +(* (*CSC: unused! *) theorem ext_comp: ∀o1,o2,o3: REL.