X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Frelations_to_o-algebra.ma;fp=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Frelations_to_o-algebra.ma;h=af3015eb368737d5f62f3ce5c8689399edfc9e07;hb=3e094922bf3fec6975fdbe6feceb509eaafe0563;hp=b3939f90ba68dfd1f1fa57eed6e8003d322f21e9;hpb=b6e187ff7580c3dbec8bf467915d0ccd0dfd65a8;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma index b3939f90b..af3015eb3 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma @@ -15,7 +15,7 @@ include "relations.ma". include "o-algebra.ma". -definition SUBSETS: objs1 SET → OAlgebra. +definition POW': objs1 SET → OAlgebra. intro A; constructor 1; [ apply (Ω \sup A); | apply subseteq; @@ -42,16 +42,16 @@ definition SUBSETS: objs1 SET → OAlgebra. | intros; split; intro; [ cases f; cases x1; exists [apply w1] exists [apply w] assumption; | cases e; cases x; exists; [apply w1] [ assumption | exists; [apply w] assumption]] - | intros; intros 2; cases (f (singleton ? a) ?); + | intros; intros 2; cases (f {(a)} ?); [ exists; [apply a] [assumption | change with (a = a); apply refl1;] | change in x1 with (a = w); change with (mem A a q); apply (. (x1‡#)); assumption]] qed. -definition powerset_of_SUBSETS: ∀A.oa_P (SUBSETS A) → Ω \sup A ≝ λA,x.x. -coercion powerset_of_SUBSETS. +definition powerset_of_POW': ∀A.oa_P (POW' A) → Ω \sup A ≝ λA,x.x. +coercion powerset_of_POW'. -definition orelation_of_relation: ∀o1,o2:REL. arrows1 ? o1 o2 → arrows2 OA (SUBSETS o1) (SUBSETS o2). +definition orelation_of_relation: ∀o1,o2:REL. arrows1 ? o1 o2 → arrows2 OA (POW' o1) (POW' o2). intros; constructor 1; [ constructor 1; @@ -112,7 +112,7 @@ lemma orelation_of_relation_preserves_equality: qed. lemma orelation_of_relation_preserves_identity: - ∀o1:REL. eq2 ? (orelation_of_relation ?? (id1 ? o1)) (id2 OA (SUBSETS o1)). + ∀o1:REL. eq2 ? (orelation_of_relation ?? (id1 ? o1)) (id2 OA (POW' o1)). intros; split; intro; split; whd; intro; [ change with ((∀x. x ♮(id1 REL o1) a1→x∈a) → a1 ∈ a); intros; apply (f a1); change with (a1 = a1); apply refl1; @@ -141,7 +141,7 @@ alias symbol "compose" = "category1 composition". lemma orelation_of_relation_preserves_composition: ∀o1,o2,o3:REL.∀F: arrows1 ? o1 o2.∀G: arrows1 ? o2 o3. orelation_of_relation ?? (G ∘ F) = - comp2 OA (SUBSETS o1) (SUBSETS o2) (SUBSETS o3) + comp2 OA (POW' o1) (POW' o2) (POW' o3) ?? (*(orelation_of_relation ?? F) (orelation_of_relation ?? G)*). [ apply (orelation_of_relation ?? F); | apply (orelation_of_relation ?? G); ] intros; split; intro; split; whd; intro; whd in ⊢ (% → %); intros; @@ -161,9 +161,9 @@ lemma orelation_of_relation_preserves_composition: | cases f1; clear f1; cases x; clear x; apply (f w); assumption;] qed. -definition SUBSETS': carr3 (arrows3 CAT2 (category2_of_category1 REL) OA). +definition POW: carr3 (arrows3 CAT2 (category2_of_category1 REL) OA). constructor 1; - [ apply SUBSETS; + [ apply POW'; | intros; constructor 1; [ apply (orelation_of_relation S T); | intros; apply (orelation_of_relation_preserves_equality S T a a' e); ] @@ -171,22 +171,24 @@ definition SUBSETS': carr3 (arrows3 CAT2 (category2_of_category1 REL) OA). | apply orelation_of_relation_preserves_composition; ] qed. -theorem SUBSETS_faithful: +theorem POW_faithful: ∀S,T.∀f,g:arrows2 (category2_of_category1 REL) S T. - map_arrows2 ?? SUBSETS' ?? f = map_arrows2 ?? SUBSETS' ?? g → f=g. - intros; unfold SUBSETS' in e; simplify in e; cases e; + map_arrows2 ?? POW ?? f = map_arrows2 ?? POW ?? g → f=g. + intros; unfold POW in e; simplify in e; cases e; unfold orelation_of_relation in e3; simplify in e3; clear e e1 e2 e4; - intros 2; lapply (e3 (singleton ? x)); cases Hletin; + intros 2; cases (e3 {(x)}); split; intro; [ lapply (s y); | lapply (s1 y); ] [2,4: exists; [1,3:apply x] split; [1,3: assumption |*: change with (x=x); apply rule #] - |*: cases Hletin1; cases x1; change in f3 with (eq1 ? x w); apply (. f3‡#); assumption;] + |*: cases Hletin; cases x1; change in f3 with (x =_1 w); apply (. f3‡#); assumption;] qed. +interpretation "lifting singl" 'singl x = + (fun11 _ (objs2 (POW _)) (singleton _) x). -theorem SUBSETS_full: ∀S,T.∀f. exT22 ? (λg. map_arrows2 ?? SUBSETS' S T g = f). +theorem POW_full: ∀S,T.∀f. exT22 ? (λg. map_arrows2 ?? POW S T g = f). intros; exists; [ constructor 1; constructor 1; - [ apply (λx:carr S.λy:carr T. y ∈ f (singleton S x)); + [ apply (λx:carr S.λy:carr T. y ∈ f {(x)}); | intros; unfold FunClass_1_OF_carr2; lapply (.= e1‡#); [4: apply mem; |6: apply Hletin;|1,2,3,5: skip] lapply (#‡prop11 ?? f ?? (†e)); [6: apply Hletin; |*:skip ]]