X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Frelations_to_o-algebra.ma;h=842219280ba10fcfe19eba1af70f08b4f8944197;hb=8b1a49bbee9eea86eb74c040defe701370ca5893;hp=9be9508e019ea712e3f0bba44eeb4b9b8b7b5ace;hpb=6b71ae123d3e412d43872b8b7965b7013a970d05;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma index 9be9508e0..842219280 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma @@ -15,7 +15,7 @@ include "relations.ma". include "o-algebra.ma". -definition SUBSETS: objs1 SET → OAlgebra. +definition POW': objs1 SET → OAlgebra. intro A; constructor 1; [ apply (Ω \sup A); | apply subseteq; @@ -42,16 +42,16 @@ definition SUBSETS: objs1 SET → OAlgebra. | intros; split; intro; [ cases f; cases x1; exists [apply w1] exists [apply w] assumption; | cases e; cases x; exists; [apply w1] [ assumption | exists; [apply w] assumption]] - | intros; intros 2; cases (f (singleton ? a) ?); + | intros; intros 2; cases (f {(a)} ?); [ exists; [apply a] [assumption | change with (a = a); apply refl1;] | change in x1 with (a = w); change with (mem A a q); apply (. (x1‡#)); assumption]] qed. -definition powerset_of_SUBSETS: ∀A.oa_P (SUBSETS A) → Ω \sup A ≝ λA,x.x. -coercion powerset_of_SUBSETS. +definition powerset_of_POW': ∀A.oa_P (POW' A) → Ω \sup A ≝ λA,x.x. +coercion powerset_of_POW'. -definition orelation_of_relation: ∀o1,o2:REL. arrows1 ? o1 o2 → arrows2 OA (SUBSETS o1) (SUBSETS o2). +definition orelation_of_relation: ∀o1,o2:REL. arrows1 ? o1 o2 → arrows2 OA (POW' o1) (POW' o2). intros; constructor 1; [ constructor 1; @@ -112,7 +112,7 @@ lemma orelation_of_relation_preserves_equality: qed. lemma orelation_of_relation_preserves_identity: - ∀o1:REL. eq2 ? (orelation_of_relation ?? (id1 ? o1)) (id2 OA (SUBSETS o1)). + ∀o1:REL. eq2 ? (orelation_of_relation ?? (id1 ? o1)) (id2 OA (POW' o1)). intros; split; intro; split; whd; intro; [ change with ((∀x. x ♮(id1 REL o1) a1→x∈a) → a1 ∈ a); intros; apply (f a1); change with (a1 = a1); apply refl1; @@ -141,7 +141,7 @@ alias symbol "compose" = "category1 composition". lemma orelation_of_relation_preserves_composition: ∀o1,o2,o3:REL.∀F: arrows1 ? o1 o2.∀G: arrows1 ? o2 o3. orelation_of_relation ?? (G ∘ F) = - comp2 OA (SUBSETS o1) (SUBSETS o2) (SUBSETS o3) + comp2 OA (POW' o1) (POW' o2) (POW' o3) ?? (*(orelation_of_relation ?? F) (orelation_of_relation ?? G)*). [ apply (orelation_of_relation ?? F); | apply (orelation_of_relation ?? G); ] intros; split; intro; split; whd; intro; whd in ⊢ (% → %); intros; @@ -161,46 +161,64 @@ lemma orelation_of_relation_preserves_composition: | cases f1; clear f1; cases x; clear x; apply (f w); assumption;] qed. -definition SUBSETS': carr3 (arrows3 CAT2 (category2_of_category1 REL) OA). +definition POW: carr3 (arrows3 CAT2 (category2_of_category1 REL) OA). constructor 1; - [ apply SUBSETS; + [ apply POW'; | intros; constructor 1; [ apply (orelation_of_relation S T); | intros; apply (orelation_of_relation_preserves_equality S T a a' e); ] | apply orelation_of_relation_preserves_identity; - | simplify; intros; - apply (.= (orelation_of_relation_preserves_composition o1 o2 o4 f1 (f3∘f2))); - apply (#‡(orelation_of_relation_preserves_composition o2 o3 o4 f2 f3)); ] + | apply orelation_of_relation_preserves_composition; ] qed. -theorem SUBSETS_faithful: +theorem POW_faithful: ∀S,T.∀f,g:arrows2 (category2_of_category1 REL) S T. - map_arrows2 ?? SUBSETS' ?? f = map_arrows2 ?? SUBSETS' ?? g → f=g. - intros; unfold SUBSETS' in e; simplify in e; cases e; + map_arrows2 ?? POW ?? f = map_arrows2 ?? POW ?? g → f=g. + intros; unfold POW in e; simplify in e; cases e; unfold orelation_of_relation in e3; simplify in e3; clear e e1 e2 e4; - intros 2; lapply (e3 (singleton ? x)); cases Hletin; + intros 2; cases (e3 {(x)}); split; intro; [ lapply (s y); | lapply (s1 y); ] [2,4: exists; [1,3:apply x] split; [1,3: assumption |*: change with (x=x); apply rule #] - |*: cases Hletin1; cases x1; change in f3 with (eq1 ? x w); apply (. f3‡#); assumption;] + |*: cases Hletin; cases x1; change in f3 with (x =_1 w); apply (. f3‡#); assumption;] qed. -theorem SUBSETS_full: ∀S,T.∀f.∃g. map_arrows2 ?? SUBSETS' S T g = f. + +lemma currify: ∀A,B,C. binary_morphism1 A B C → A → unary_morphism1 B C. +intros; constructor 1; [ apply (b c); | intros; apply (#‡e);] +qed. + +(* +alias symbol "singl" = "singleton". +alias symbol "eq" = "setoid eq". +lemma in_singleton_to_eq : ∀A:setoid.∀y,x:A.y ∈ {(x)} → (eq1 A) y x. +intros; apply sym1; apply f; +qed. + +lemma eq_to_in_singleton : ∀A:setoid.∀y,x:A.eq1 A y x → y ∈ {(x)}. +intros; apply (e^-1); +qed. +*) + +interpretation "lifting singl" 'singl x = + (fun11 ? (objs2 (POW ?)) (singleton ?) x). + +theorem POW_full: ∀S,T.∀f. exT22 ? (λg. map_arrows2 ?? POW S T g = f). intros; exists; [ constructor 1; constructor 1; - [ apply (λx.λy. y ∈ f (singleton S x)); + [ apply (λx:carr S.λy:carr T. y ∈ f {(x)}); | intros; unfold FunClass_1_OF_carr2; lapply (.= e1‡#); [4: apply mem; |6: apply Hletin;|1,2,3,5: skip] - lapply (#‡prop11 ?? f ?? (†e)); [6: apply Hletin; |*:skip ]] - | whd; split; whd; intro; simplify; unfold map_arrows2; simplify; + lapply (#‡prop11 ?? f ?? (†e)); [6: apply Hletin; |*:skip ]] + | whd; split; whd; intro; simplify; unfold map_arrows2; simplify; [ split; [ change with (∀a1.(∀x. a1 ∈ f (singleton S x) → x ∈ a) → a1 ∈ f⎻* a); | change with (∀a1.a1 ∈ f⎻* a → (∀x.a1 ∈ f (singleton S x) → x ∈ a)); ] | split; - [ change with (∀a1.(∃y. y ∈ f (singleton S a1) ∧ y ∈ a) → a1 ∈ f⎻ a); - | change with (∀a1.a1 ∈ f⎻ a → (∃y.y ∈ f (singleton S a1) ∧ y ∈ a)); ] + [ change with (∀a1.(∃y:carr T. y ∈ f (singleton S a1) ∧ y ∈ a) → a1 ∈ f⎻ a); + | change with (∀a1.a1 ∈ f⎻ a → (∃y:carr T.y ∈ f (singleton S a1) ∧ y ∈ a)); ] | split; - [ change with (∀a1.(∃x. a1 ∈ f (singleton S x) ∧ x ∈ a) → a1 ∈ f a); - | change with (∀a1.a1 ∈ f a → (∃x. a1 ∈ f (singleton S x) ∧ x ∈ a)); ] + [ change with (∀a1.(∃x:carr S. a1 ∈ f (singleton S x) ∧ x ∈ a) → a1 ∈ f a); + | change with (∀a1.a1 ∈ f a → (∃x:carr S. a1 ∈ f (singleton S x) ∧ x ∈ a)); ] | split; [ change with (∀a1.(∀y. y ∈ f (singleton S a1) → y ∈ a) → a1 ∈ f* a); | change with (∀a1.a1 ∈ f* a → (∀y. y ∈ f (singleton S a1) → y ∈ a)); ]] @@ -243,4 +261,4 @@ theorem SUBSETS_full: ∀S,T.∀f.∃g. map_arrows2 ?? SUBSETS' S T g = f. [ intros 2; change in f3 with (eq1 ? a1 a2); change with (a2 ∈ f* a); apply (. f3^-1‡#); assumption; | assumption ]]] -qed. +qed. \ No newline at end of file