X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fgroup.ma;h=0e2668c2d71c58923390538a8753fff9868158df;hb=87ed0c3e2ccd74f21f81c2cc9ed2945109bf0a9a;hp=b0c7c2e9b4855754e608e65b2c1474be0f3aa4d3;hpb=a2fe87da00fb5b9a39e9a1c7d796c61d4c7346af;p=helm.git diff --git a/helm/software/matita/dama/group.ma b/helm/software/matita/dama/group.ma index b0c7c2e9b..0e2668c2d 100644 --- a/helm/software/matita/dama/group.ma +++ b/helm/software/matita/dama/group.ma @@ -14,7 +14,7 @@ set "baseuri" "cic:/matita/group/". -include "excedence.ma". +include "excess.ma". definition left_neutral ≝ λC:apartness.λop.λe:C. ∀x:C. op e x ≈ x. definition right_neutral ≝ λC:apartness.λop. λe:C. ∀x:C. op x e ≈ x. @@ -83,6 +83,14 @@ lapply (plus_comm ? z x) as E1; lapply (plus_comm ? z y) as E2; lapply (ap_rewl ???? E1 A) as A1; lapply (ap_rewr ???? E2 A1) as A2; apply (plus_strong_ext ???? A2); qed. + +lemma plus_cancl_ap: ∀G:abelian_group.∀x,y,z:G.z+x # z + y → x # y. +intros; apply plus_strong_ext; assumption; +qed. + +lemma plus_cancr_ap: ∀G:abelian_group.∀x,y,z:G.x+z # y+z → x # y. +intros; apply plus_strong_extr; assumption; +qed. lemma feq_plusr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → y+x ≈ z+x. intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_extr ? x)); @@ -130,6 +138,12 @@ apply (ap_rewl ??? (y + (x + -x))); apply (ap_rewr ??? z (zero_neutral ??)); assumption]] qed. + +lemma applus: ∀E:abelian_group.∀x,a,y,b:E.x + a # y + b → x # y ∨ a # b. +intros; cases (ap_cotransitive ??? (y+a) a1); [left|right] +[apply (plus_cancr_ap ??? a)|apply (plus_cancl_ap ??? y)] +assumption; +qed. lemma plus_cancl: ∀G:abelian_group.∀y,z,x:G. x+y ≈ x+z → y ≈ z. intros 6 (G y z x E Ayz); apply E; apply fap_plusl; assumption; @@ -142,37 +156,38 @@ qed. theorem eq_opp_plus_plus_opp_opp: ∀G:abelian_group.∀x,y:G. -(x+y) ≈ -x + -y. intros (G x y); apply (plus_cancr ??? (x+y)); -apply (eq_trans ?? 0 ? (opp_inverse ??)); -apply (eq_trans ?? (-x + -y + x + y)); [2: apply (eq_sym ??? (plus_assoc ????))] -apply (eq_trans ?? (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm] -apply (eq_trans ?? (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;] -apply (eq_trans ?? (-y + 0 + y)); +apply (Eq≈ 0 (opp_inverse ??)); +apply (Eq≈ (-x + -y + x + y)); [2: apply (eq_sym ??? (plus_assoc ????))] +apply (Eq≈ (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm] +apply (Eq≈ (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;] +apply (Eq≈ (-y + 0 + y)); [2: apply feq_plusr; apply feq_plusl; apply eq_sym; apply opp_inverse] -apply (eq_trans ?? (-y + y)); +apply (Eq≈ (-y + y)); [2: apply feq_plusr; apply eq_sym; - apply (eq_trans ?? (0+-y)); [apply plus_comm|apply zero_neutral]] + apply (Eq≈ (0+-y)); [apply plus_comm|apply zero_neutral]] apply eq_sym; apply opp_inverse. qed. theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x ≈ x. intros (G x); apply (plus_cancl ??? (-x)); -apply (eq_trans ?? (--x + -x)); [apply plus_comm] -apply (eq_trans ?? 0); [apply opp_inverse] +apply (Eq≈ (--x + -x) (plus_comm ???)); +apply (Eq≈ 0 (opp_inverse ??)); apply eq_sym; apply opp_inverse; qed. theorem eq_zero_opp_zero: ∀G:abelian_group.0 ≈ -0. [assumption] intro G; apply (plus_cancr ??? 0); -apply (eq_trans ?? 0); [apply zero_neutral;] +apply (Eq≈ 0); [apply zero_neutral;] apply eq_sym; apply opp_inverse; qed. lemma feq_oppr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x ≈ -y → x ≈ -z. intros (G x y z H1 H2); apply (plus_cancr ??? z); -apply (eq_trans ?? 0 ?? (opp_inverse ?z)); -apply (eq_trans ?? (-y + z) ? H2); -apply (eq_trans ?? (-y + y) ? H1); -apply (eq_trans ?? 0 ? (opp_inverse ??)); +(* apply (eq_trans ??? 0 ? (opp_inverse ??)); *) +apply (Eq≈ 0 ? (opp_inverse ??)); +apply (Eq≈ (-y + z) H2); +apply (Eq≈ (-y + y) H1); +apply (Eq≈ 0 (opp_inverse ??)); apply eq_reflexive; qed. @@ -204,25 +219,3 @@ compose feq_plusl with feq_opp(H); apply H; assumption; qed. coercion cic:/matita/group/eq_opp_plusl.con nocomposites. - -lemma plus_cancr_ap: ∀G:abelian_group.∀x,y,z:G. x+z # y+z → x # y. -intros (G x y z H); lapply (fap_plusr ? (-z) ?? H) as H1; clear H; -lapply (ap_rewl ? (x + (z + -z)) ?? (plus_assoc ? x z (-z)) H1) as H2; clear H1; -lapply (ap_rewl ? (x + (-z + z)) ?? (plus_comm ?z (-z)) H2) as H1; clear H2; -lapply (ap_rewl ? (x + 0) ?? (opp_inverse ?z) H1) as H2; clear H1; -lapply (ap_rewl ? (0+x) ?? (plus_comm ?x 0) H2) as H1; clear H2; -lapply (ap_rewl ? x ?? (zero_neutral ?x) H1) as H2; clear H1; -lapply (ap_rewr ? (y + (z + -z)) ?? (plus_assoc ? y z (-z)) H2) as H3; -lapply (ap_rewr ? (y + (-z + z)) ?? (plus_comm ?z (-z)) H3) as H4; -lapply (ap_rewr ? (y + 0) ?? (opp_inverse ?z) H4) as H5; -lapply (ap_rewr ? (0+y) ?? (plus_comm ?y 0) H5) as H6; -lapply (ap_rewr ? y ?? (zero_neutral ?y) H6); -assumption; -qed. - -lemma pluc_cancl_ap: ∀G:abelian_group.∀x,y,z:G. z+x # z+y → x # y. -intros (G x y z H); apply (plus_cancr_ap ??? z); -apply (ap_rewl ???? (plus_comm ???)); -apply (ap_rewr ???? (plus_comm ???)); -assumption; -qed.