X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fgroups.ma;h=f2b4bd01cfc47198e66f7a52130c38410778b7c9;hb=20d600f225a0994c607b23226578078eb6b79bbe;hp=da24dadc56ea7d0361f05a23af7dc848969148b5;hpb=c4050b216986232e7ad0095542b940960626614b;p=helm.git diff --git a/helm/software/matita/dama/groups.ma b/helm/software/matita/dama/groups.ma index da24dadc5..f2b4bd01c 100644 --- a/helm/software/matita/dama/groups.ma +++ b/helm/software/matita/dama/groups.ma @@ -36,13 +36,13 @@ record abelian_group : Type ≝ plus: carr → carr → carr; zero: carr; opp: carr → carr; - plus_assoc: associative ? plus (eq carr); - plus_comm: commutative ? plus (eq carr); - zero_neutral: left_neutral ? plus zero; - opp_inverse: left_inverse ? plus zero opp; + plus_assoc_: associative ? plus (eq carr); + plus_comm_: commutative ? plus (eq carr); + zero_neutral_: left_neutral ? plus zero; + opp_inverse_: left_inverse ? plus zero opp; plus_strong_ext: ∀z.strong_ext ? (plus z) }. - + notation "0" with precedence 89 for @{ 'zero }. interpretation "Abelian group zero" 'zero = @@ -59,16 +59,11 @@ definition minus ≝ interpretation "Abelian group minus" 'minus a b = (cic:/matita/groups/minus.con _ a b). - -lemma ap_rewl: ∀A:apartness.∀x,z,y:A. x ≈ y → y # z → x # z. -intros (A x z y Exy Ayz); cases (ap_cotransitive ???x Ayz); [2:assumption] -cases (Exy (ap_symmetric ??? a)); -qed. - -lemma ap_rewr: ∀A:apartness.∀x,z,y:A. x ≈ y → z # y → z # x. -intros (A x z y Exy Azy); apply ap_symmetric; apply (ap_rewl ???? Exy); -apply ap_symmetric; assumption; -qed. + +lemma plus_assoc: ∀G:abelian_group.∀x,y,z:G.x+(y+z)≈x+y+z ≝ plus_assoc_. +lemma plus_comm: ∀G:abelian_group.∀x,y:G.x+y≈y+x ≝ plus_comm_. +lemma zero_neutral: ∀G:abelian_group.∀x:G.0+x≈x ≝ zero_neutral_. +lemma opp_inverse: ∀G:abelian_group.∀x:G.-x+x≈0 ≝ opp_inverse_. definition ext ≝ λA:apartness.λop:A→A. ∀x,y. x ≈ y → op x ≈ op y. @@ -80,6 +75,8 @@ lemma feq_plusl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x+y ≈ x+z. intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_ext ? x)); assumption; qed. + +coercion cic:/matita/groups/feq_plusl.con nocomposites. lemma plus_strong_extr: ∀G:abelian_group.∀z:G.strong_ext ? (λx.x + z). intros 5 (G z x y A); simplify in A; @@ -93,6 +90,18 @@ intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_extr ? x)); assumption; qed. +coercion cic:/matita/groups/feq_plusr.con nocomposites. + +(* generation of coercions to make *_rew[lr] easier *) +lemma feq_plusr_sym_: ∀G:abelian_group.∀x,y,z:G.z ≈ y → y+x ≈ z+x. +compose feq_plusr with eq_sym (H); apply H; assumption; +qed. +coercion cic:/matita/groups/feq_plusr_sym_.con nocomposites. +lemma feq_plusl_sym_: ∀G:abelian_group.∀x,y,z:G.z ≈ y → x+y ≈ x+z. +compose feq_plusl with eq_sym (H); apply H; assumption; +qed. +coercion cic:/matita/groups/feq_plusl_sym_.con nocomposites. + lemma fap_plusl: ∀G:abelian_group.∀x,y,z:G. y # z → x+y # x+z. intros (G x y z Ayz); apply (plus_strong_ext ? (-x)); apply (ap_rewl ??? ((-x + x) + y)); @@ -101,23 +110,23 @@ apply (ap_rewl ??? ((-x + x) + y)); [1: apply plus_assoc; |2: apply (ap_rewl ??? (0 + y)); [1: apply (feq_plusr ???? (opp_inverse ??)); - |2: apply (ap_rewl ???? (zero_neutral ? y)); apply (ap_rewr ??? (0 + z)); - [1: apply (feq_plusr ???? (opp_inverse ??)); - |2: apply (ap_rewr ???? (zero_neutral ??)); assumption;]]]] + |2: apply (ap_rewl ???? (zero_neutral ? y)); + apply (ap_rewr ??? (0 + z) (opp_inverse ??)); + apply (ap_rewr ???? (zero_neutral ??)); assumption;]]] qed. lemma fap_plusr: ∀G:abelian_group.∀x,y,z:G. y # z → y+x # z+x. intros (G x y z Ayz); apply (plus_strong_extr ? (-x)); apply (ap_rewl ??? (y + (x + -x))); -[1: apply (eq_symmetric ??? (plus_assoc ????)); +[1: apply (eq_sym ??? (plus_assoc ????)); |2: apply (ap_rewr ??? (z + (x + -x))); - [1: apply (eq_symmetric ??? (plus_assoc ????)); - |2: apply (ap_rewl ??? (y + (-x+x)) (feq_plusl ???? (plus_comm ???))); - apply (ap_rewl ??? (y + 0) (feq_plusl ???? (opp_inverse ??))); + [1: apply (eq_sym ??? (plus_assoc ????)); + |2: apply (ap_rewl ??? (y + (-x+x)) (plus_comm ? x (-x))); + apply (ap_rewl ??? (y + 0) (opp_inverse ??)); apply (ap_rewl ??? (0 + y) (plus_comm ???)); apply (ap_rewl ??? y (zero_neutral ??)); - apply (ap_rewr ??? (z + (-x+x)) (feq_plusl ???? (plus_comm ???))); - apply (ap_rewr ??? (z + 0) (feq_plusl ???? (opp_inverse ??))); + apply (ap_rewr ??? (z + (-x+x)) (plus_comm ? x (-x))); + apply (ap_rewr ??? (z + 0) (opp_inverse ??)); apply (ap_rewr ??? (0 + z) (plus_comm ???)); apply (ap_rewr ??? z (zero_neutral ??)); assumption]] @@ -134,27 +143,65 @@ qed. theorem eq_opp_plus_plus_opp_opp: ∀G:abelian_group.∀x,y:G. -(x+y) ≈ -x + -y. intros (G x y); apply (plus_cancr ??? (x+y)); -apply (eq_transitive ?? 0); [apply (opp_inverse ??)] -apply (eq_transitive ?? (-x + -y + x + y)); [2: apply (eq_symmetric ??? (plus_assoc ????))] -apply (eq_transitive ?? (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm] -apply (eq_transitive ?? (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;] -apply (eq_transitive ?? (-y + 0 + y)); - [2: apply feq_plusr; apply feq_plusl; apply eq_symmetric; apply opp_inverse] -apply (eq_transitive ?? (-y + y)); - [2: apply feq_plusr; apply eq_symmetric; - apply (eq_transitive ?? (0+-y)); [apply plus_comm|apply zero_neutral]] -apply eq_symmetric; apply opp_inverse. +apply (eq_trans ?? 0 ? (opp_inverse ??)); +apply (eq_trans ?? (-x + -y + x + y)); [2: apply (eq_sym ??? (plus_assoc ????))] +apply (eq_trans ?? (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm] +apply (eq_trans ?? (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;] +apply (eq_trans ?? (-y + 0 + y)); + [2: apply feq_plusr; apply feq_plusl; apply eq_sym; apply opp_inverse] +apply (eq_trans ?? (-y + y)); + [2: apply feq_plusr; apply eq_sym; + apply (eq_trans ?? (0+-y)); [apply plus_comm|apply zero_neutral]] +apply eq_sym; apply opp_inverse. qed. theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x ≈ x. intros (G x); apply (plus_cancl ??? (-x)); -apply (eq_transitive ?? (--x + -x)); [apply plus_comm] -apply (eq_transitive ?? 0); [apply opp_inverse] -apply eq_symmetric; apply opp_inverse; +apply (eq_trans ?? (--x + -x)); [apply plus_comm] +apply (eq_trans ?? 0); [apply opp_inverse] +apply eq_sym; apply opp_inverse; qed. theorem eq_zero_opp_zero: ∀G:abelian_group.0 ≈ -0. [assumption] intro G; apply (plus_cancr ??? 0); -apply (eq_transitive ?? 0); [apply zero_neutral;] -apply eq_symmetric; apply opp_inverse; +apply (eq_trans ?? 0); [apply zero_neutral;] +apply eq_sym; apply opp_inverse; +qed. + +lemma feq_oppr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x ≈ -y → x ≈ -z. +intros (G x y z H1 H2); apply (plus_cancr ??? z); +apply (eq_trans ?? 0 ?? (opp_inverse ?z)); +apply (eq_trans ?? (-y + z) ? H2); +apply (eq_trans ?? (-y + y) ? H1); +apply (eq_trans ?? 0 ? (opp_inverse ??)); +apply eq_reflexive; +qed. + +lemma feq_oppl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → -y ≈ x → -z ≈ x. +intros (G x y z H1 H2); apply eq_sym; apply (feq_oppr ??y); +[2:apply eq_sym] assumption; qed. + +lemma feq_opp: ∀G:abelian_group.∀x,y:G. x ≈ y → -x ≈ -y. +intros (G x y H); apply (feq_oppl ??y ? H); apply eq_reflexive; +qed. + +coercion cic:/matita/groups/feq_opp.con nocomposites. + +lemma eq_opp_sym: ∀G:abelian_group.∀x,y:G. y ≈ x → -x ≈ -y. +compose feq_opp with eq_sym (H); apply H; assumption; +qed. + +coercion cic:/matita/groups/eq_opp_sym.con nocomposites. + +lemma eq_opp_plusr: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(x + z) ≈ -(y + z). +compose feq_plusr with feq_opp(H); apply H; assumption; +qed. + +coercion cic:/matita/groups/eq_opp_plusr.con nocomposites. + +lemma eq_opp_plusl: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(z + x) ≈ -(z + y). +compose feq_plusl with feq_opp(H); apply H; assumption; +qed. + +coercion cic:/matita/groups/eq_opp_plusl.con nocomposites.