X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fintegration_algebras.ma;h=1ebfad8344ec62f45b73933bad58ce4fd1810a04;hb=d69878e5f8e69bc0fb71b10a14938803f7f87369;hp=fa76d2d98264999988e113fe1093abba44c073ea;hpb=cb396220683593906f2331a6b471434428a6370f;p=helm.git diff --git a/helm/software/matita/dama/integration_algebras.ma b/helm/software/matita/dama/integration_algebras.ma index fa76d2d98..1ebfad834 100644 --- a/helm/software/matita/dama/integration_algebras.ma +++ b/helm/software/matita/dama/integration_algebras.ma @@ -14,277 +14,7 @@ set "baseuri" "cic:/matita/integration_algebras/". -include "higher_order_defs/functions.ma". -include "nat/nat.ma". -include "nat/orders.ma". - -definition left_neutral \def λC,op.λe:C. ∀x:C. op e x = x. - -definition right_neutral \def λC,op. λe:C. ∀x:C. op x e=x. - -definition left_inverse \def λC,op.λe:C.λinv:C→C. ∀x:C. op (inv x) x = e. - -definition right_inverse \def λC,op.λe:C.λ inv: C→ C. ∀x:C. op x (inv x)=e. - -definition distributive_left ≝ - λA:Type.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f x (g y z) = g (f x y) (f x z). - -definition distributive_right ≝ - λA:Type.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f (g x y) z = g (f x z) (f y z). - -record is_abelian_group (C:Type) (plus:C→C→C) (zero:C) (opp:C→C) : Prop \def - { (* abelian additive semigroup properties *) - plus_assoc_: associative ? plus; - plus_comm_: symmetric ? plus; - (* additive monoid properties *) - zero_neutral_: left_neutral ? plus zero; - (* additive group properties *) - opp_inverse_: left_inverse ? plus zero opp - }. - -record abelian_group : Type \def - { carrier:> Type; - plus: carrier → carrier → carrier; - zero: carrier; - opp: carrier → carrier; - ag_abelian_group_properties: is_abelian_group ? plus zero opp - }. - -notation "0" with precedence 89 -for @{ 'zero }. - -interpretation "Ring zero" 'zero = - (cic:/matita/integration_algebras/zero.con _). - -interpretation "Ring plus" 'plus a b = - (cic:/matita/integration_algebras/plus.con _ a b). - -interpretation "Ring opp" 'uminus a = - (cic:/matita/integration_algebras/opp.con _ a). - -definition minus ≝ - λG:abelian_group.λa,b:G. a + -b. - -interpretation "Ring minus" 'minus a b = - (cic:/matita/integration_algebras/minus.con _ a b). - -theorem plus_assoc: ∀G:abelian_group. associative ? (plus G). - intro; - apply (plus_assoc_ ? ? ? ? (ag_abelian_group_properties G)). -qed. - -theorem plus_comm: ∀G:abelian_group. symmetric ? (plus G). - intro; - apply (plus_comm_ ? ? ? ? (ag_abelian_group_properties G)). -qed. - -theorem zero_neutral: ∀G:abelian_group. left_neutral ? (plus G) 0. - intro; - apply (zero_neutral_ ? ? ? ? (ag_abelian_group_properties G)). -qed. - -theorem opp_inverse: ∀G:abelian_group. left_inverse ? (plus G) 0 (opp G). - intro; - apply (opp_inverse_ ? ? ? ? (ag_abelian_group_properties G)). -qed. - -lemma cancellationlaw: ∀G:abelian_group.∀x,y,z:G. x+y=x+z → y=z. -intros; -generalize in match (eq_f ? ? (λa.-x +a) ? ? H); -intros; clear H; -rewrite < plus_assoc in H1; -rewrite < plus_assoc in H1; -rewrite > opp_inverse in H1; -rewrite > zero_neutral in H1; -rewrite > zero_neutral in H1; -assumption. -qed. - -(****************************** rings *********************************) - -record is_ring (G:abelian_group) (mult:G→G→G) (one:G) : Prop -≝ - { (* multiplicative monoid properties *) - mult_assoc_: associative ? mult; - one_neutral_left_: left_neutral ? mult one; - one_neutral_right_: right_neutral ? mult one; - (* ring properties *) - mult_plus_distr_left_: distributive_left ? mult (plus G); - mult_plus_distr_right_: distributive_right ? mult (plus G); - not_eq_zero_one_: (0 ≠ one) - }. - -record ring : Type \def - { r_abelian_group:> abelian_group; - mult: r_abelian_group → r_abelian_group → r_abelian_group; - one: r_abelian_group; - r_ring_properties: is_ring r_abelian_group mult one - }. - -theorem mult_assoc: ∀R:ring.associative ? (mult R). - intros; - apply (mult_assoc_ ? ? ? (r_ring_properties R)). -qed. - -theorem one_neutral_left: ∀R:ring.left_neutral ? (mult R) (one R). - intros; - apply (one_neutral_left_ ? ? ? (r_ring_properties R)). -qed. - -theorem one_neutral_right: ∀R:ring.right_neutral ? (mult R) (one R). - intros; - apply (one_neutral_right_ ? ? ? (r_ring_properties R)). -qed. - -theorem mult_plus_distr_left: ∀R:ring.distributive_left ? (mult R) (plus R). - intros; - apply (mult_plus_distr_left_ ? ? ? (r_ring_properties R)). -qed. - -theorem mult_plus_distr_right: ∀R:ring.distributive_right ? (mult R) (plus R). - intros; - apply (mult_plus_distr_right_ ? ? ? (r_ring_properties R)). -qed. - -theorem not_eq_zero_one: ∀R:ring.0 ≠ one R. - intros; - apply (not_eq_zero_one_ ? ? ? (r_ring_properties R)). -qed. - -interpretation "Ring mult" 'times a b = - (cic:/matita/integration_algebras/mult.con _ a b). - -notation "1" with precedence 89 -for @{ 'one }. - -interpretation "Field one" 'one = - (cic:/matita/integration_algebras/one.con _). - -lemma eq_mult_zero_x_zero: ∀R:ring.∀x:R.0*x=0. - intros; - generalize in match (zero_neutral R 0); intro; - generalize in match (eq_f ? ? (λy.y*x) ? ? H); intro; clear H; - rewrite > mult_plus_distr_right in H1; - generalize in match (eq_f ? ? (λy.-(0*x)+y) ? ? H1); intro; clear H1; - rewrite < plus_assoc in H; - rewrite > opp_inverse in H; - rewrite > zero_neutral in H; - assumption. -qed. - -lemma eq_mult_x_zero_zero: ∀R:ring.∀x:R.x*0=0. -intros; -generalize in match (zero_neutral R 0); -intro; -generalize in match (eq_f ? ? (\lambda y.x*y) ? ? H); intro; clear H; -rewrite > mult_plus_distr_left in H1; -generalize in match (eq_f ? ? (\lambda y. (-(x*0)) +y) ? ? H1);intro; -clear H1; -rewrite < plus_assoc in H; -rewrite > opp_inverse in H; -rewrite > zero_neutral in H; -assumption. -qed. - -record is_field (R:ring) (inv:∀x:R.x ≠ 0 → R) : Prop -≝ - { (* multiplicative abelian properties *) - mult_comm_: symmetric ? (mult R); - (* multiplicative group properties *) - inv_inverse_: ∀x.∀p: x ≠ 0. mult ? (inv x p) x = 1 - }. - -lemma opp_opp: \forall R:ring. \forall x:R. (-(-x))=x. -intros; -apply (cancellationlaw ? (-x) ? ?); -rewrite > (opp_inverse R x); -rewrite > plus_comm; -rewrite > opp_inverse; -reflexivity. -qed. - - -let rec sum (C:Type) (plus:C→C→C) (zero,one:C) (n:nat) on n ≝ - match n with - [ O ⇒ zero - | (S m) ⇒ plus one (sum C plus zero one m) - ]. - -record field : Type \def - { f_ring:> ring; - inv: ∀x:f_ring. x ≠ 0 → f_ring; - field_properties: is_field f_ring inv - }. - -theorem mult_comm: ∀F:field.symmetric ? (mult F). - intro; - apply (mult_comm_ ? ? (field_properties F)). -qed. - -theorem inv_inverse: ∀F:field.∀x.∀p: x ≠ 0. mult ? (inv F x p) x = 1. - intro; - apply (inv_inverse_ ? ? (field_properties F)). -qed. - -definition sum_field ≝ - λF:field. sum ? (plus F) (zero F) (one F). - -record is_ordered_field_ch0 (F:field) (le:F→F→Prop) : Prop \def - { of_mult_compat: ∀a,b. le 0 a → le 0 b → le 0 (a*b); - of_plus_compat: ∀a,b,c. le a b → le (a+c) (b+c); - of_weak_tricotomy : ∀a,b. a≠b → le a b ∨ le b a; - (* 0 characteristics *) - of_char0: ∀n. n > O → sum ? (plus F) 0 1 n ≠ 0 - }. - -record ordered_field_ch0 : Type \def - { of_field:> field; - of_le: of_field → of_field → Prop; - of_ordered_field_properties:> is_ordered_field_ch0 of_field of_le - }. - -interpretation "Ordered field le" 'leq a b = - (cic:/matita/integration_algebras/of_le.con _ a b). - -definition lt \def λF:ordered_field_ch0.λa,b:F.a ≤ b ∧ a ≠ b. - -interpretation "Ordered field lt" 'lt a b = - (cic:/matita/integration_algebras/lt.con _ a b). - -lemma le_zero_x_to_le_opp_x_zero: ∀F:ordered_field_ch0.∀x:F. 0 ≤ x → -x ≤ 0. -intros; - generalize in match (of_plus_compat ? ? F ? ? (-x) H); intro; - rewrite > zero_neutral in H1; - rewrite > plus_comm in H1; - rewrite > opp_inverse in H1; - assumption. -qed. - -lemma le_x_zero_to_le_zero_opp_x: ∀F:ordered_field_ch0.∀x:F. x ≤ 0 → 0 ≤ -x. - intros; - generalize in match (of_plus_compat ? ? F ? ? (-x) H); intro; - rewrite > zero_neutral in H1; - rewrite > plus_comm in H1; - rewrite > opp_inverse in H1; - assumption. -qed. - -(* -lemma eq_opp_x_times_opp_one_x: ∀F:ordered_field_ch0.∀x:F.-x = -1*x. - intros; - -lemma not_eq_x_zero_to_lt_zero_mult_x_x: - ∀F:ordered_field_ch0.∀x:F. x ≠ 0 → 0 < x * x. - intros; - elim (of_weak_tricotomy ? ? ? ? ? ? ? ? F ? ? H); - [ generalize in match (le_x_zero_to_le_zero_opp_x F ? H1); intro; - generalize in match (of_mult_compat ? ? ? ? ? ? ? ? F ? ? H2 H2); intro; -*) - -(* The ordering is not necessary. *) -axiom not_eq_sum_field_zero: ∀F:ordered_field_ch0.∀n. O is_semi_norm ? ? norm; + n_properness: ∀x:V. norm x = 0 → x = 0 + }. + record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def { (* abelian semigroup properties *) l_comm_j: symmetric ? join; @@ -360,6 +104,47 @@ record archimedean_riesz_space (K:ordered_field_ch0) : Type \def ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space }. +record is_integral (K) (R:archimedean_riesz_space K) (I:Type_OF_archimedean_riesz_space ? R→K) : Prop +\def + { i_positive: ∀f:R. le ? R 0 f → of_le K 0 (I f); + i_linear1: ∀f,g:R. I (f + g) = I f + I g; + i_linear2: ∀f:R.∀k:K. I (emult ? R k f) = k*(I f) + }. + +definition is_weak_unit ≝ +(* This definition is by Spitters. He cites Fremlin 353P, but: + 1. that theorem holds only in f-algebras (as in Spitters, but we are + defining it on Riesz spaces) + 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? + λR:real.λV:archimedean_riesz_space R.λunit: V. + ∀x:V. meet x unit = 0 → u = 0. +*) λR:real.λV:archimedean_riesz_space R.λe:V.True. + +record integration_riesz_space (R:real) : Type \def + { irs_archimedean_riesz_space:> archimedean_riesz_space R; + irs_unit: Type_OF_archimedean_riesz_space ? irs_archimedean_riesz_space; + irs_weak_unit: is_weak_unit ? ? irs_unit; + integral: Type_OF_archimedean_riesz_space ? irs_archimedean_riesz_space → R; + irs_integral_properties: is_integral R irs_archimedean_riesz_space integral; + irs_limit1: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn.integral (meet ? irs_archimedean_riesz_space f + ((sum_field R n)*irs_unit))) + (integral f); + irs_limit2: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn. + integral (meet ? irs_archimedean_riesz_space f + ((inv ? (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))) + ) * irs_unit))) 0; + irs_quotient_space1: + ∀f,g:irs_archimedean_riesz_space. + f=g → integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 + }. + record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ { (* ring properties *) @@ -369,80 +154,48 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) }. -record algebra (K: field) (V:vector_space K) : Type \def +record algebra (K: field) (V:vector_space K) (a_one:V) : Type \def { a_mult: V → V → V; - a_one: V; a_algebra_properties: is_algebra K V a_mult a_one }. interpretation "Algebra product" 'times a b = (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). -interpretation "Algebra one" 'one = - (cic:/matita/integration_algebras/a_one.con _ _ _). - definition ring_of_algebra ≝ - λK.λV:vector_space K.λA:algebra ? V. - mk_ring V (a_mult ? ? A) (a_one ? ? A) - (a_ring ? ? ? ? (a_algebra_properties ? ? A)). + λK.λV:vector_space K.λone:Type_OF_vector_space ? V.λA:algebra ? V one. + mk_ring V (a_mult ? ? ? A) one + (a_ring ? ? ? ? (a_algebra_properties ? ? ? A)). coercion cic:/matita/integration_algebras/ring_of_algebra.con. -record is_f_algebra (K) (S:archimedean_riesz_space K) (A:algebra ? S) : Prop +record is_f_algebra (K) (S:archimedean_riesz_space K) (one: S) + (A:algebra ? S one) : Prop \def { compat_mult_le: ∀f,g:S. - le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? A f g); + le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? ? A f g); compat_mult_meet: ∀f,g,h:S. - meet ? S f g = 0 → meet ? S (a_mult ? ? A h f) g = 0 + meet ? S f g = 0 → meet ? S (a_mult ? ? ? A h f) g = 0 }. -record f_algebra (K:ordered_field_ch0) : Type \def -{ fa_archimedean_riesz_space:> archimedean_riesz_space K; - fa_algebra:> algebra ? fa_archimedean_riesz_space; - fa_f_algebra_properties: is_f_algebra ? fa_archimedean_riesz_space fa_algebra +record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) + (one:Type_OF_archimedean_riesz_space ? R) : +Type \def +{ fa_algebra:> algebra ? R one; + fa_f_algebra_properties: is_f_algebra ? ? ? fa_algebra }. (* to be proved; see footnote 2 in the paper by Spitters *) -axiom symmetric_a_mult: ∀K.∀A:f_algebra K. symmetric ? (a_mult ? ? A). - - -definition tends_to : ∀F:ordered_field_ch0.∀f:nat→F.∀l:F.Prop. - alias symbol "leq" = "Ordered field le". - alias id "le" = "cic:/matita/nat/orders/le.ind#xpointer(1/1)". - apply - (λF:ordered_field_ch0.λf:nat → F.λl:F. - ∀n:nat.∃m:nat.∀j:nat. le m j → - l - (inv F (sum_field F (S n)) ?) ≤ f j ∧ - f j ≤ l + (inv F (sum_field F (S n)) ?)); - apply not_eq_sum_field_zero; - unfold; - auto new. -qed. - -record is_integral (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop -\def - { i_positive: ∀f:Type_OF_f_algebra ? A. le ? (lattice_OF_f_algebra ? A) 0 f → of_le K 0 (I f); - i_linear1: ∀f,g:Type_OF_f_algebra ? A. I (f + g) = I f + I g; - i_linear2: ∀f:A.∀k:K. I (emult ? A k f) = k*(I f) - }. +axiom symmetric_a_mult: + ∀K,R,one.∀A:f_algebra K R one. symmetric ? (a_mult ? ? ? A). (* Here we are avoiding a construction (the quotient space to define f=g iff I(|f-g|)=0 *) -record is_integration_f_algebra (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop -\def - { ifa_integral: is_integral ? ? I; - ifa_limit1: - ∀f:A. tends_to ? (λn.I(meet ? A f ((sum_field K n)*(a_one ? ? A)))) (I f); - ifa_limit2: - ∀f:A. - tends_to ? - (λn. - I (meet ? A f - ((inv ? (sum_field K (S n)) - (not_eq_sum_field_zero K (S n) (le_S_S O n (le_O_n n))) - ) * (a_one ? ? A)))) 0; - ifa_quotient_space1: - ∀f,g:A. f=g → I(absolute_value ? A (f - g)) = 0 +record integration_f_algebra (R:real) : Type \def + { ifa_integration_riesz_space:> integration_riesz_space R; + ifa_f_algebra:> + f_algebra ? ifa_integration_riesz_space + (irs_unit ? ifa_integration_riesz_space) }. \ No newline at end of file