X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Flattice.ma;fp=helm%2Fsoftware%2Fmatita%2Fdama%2Flattice.ma;h=1f605c257e2e13820be92d875ab5249da7cb09a0;hb=55dc87ec418b5b8afe10164cfc61b5ad80a88e6c;hp=fcad3fdc54dc227e4ea3cbd9c3ac7665db07b831;hpb=24b1ff241e9b3428f8f5275a4ac9e8d0ca20d82f;p=helm.git diff --git a/helm/software/matita/dama/lattice.ma b/helm/software/matita/dama/lattice.ma index fcad3fdc5..1f605c257 100644 --- a/helm/software/matita/dama/lattice.ma +++ b/helm/software/matita/dama/lattice.ma @@ -14,34 +14,33 @@ include "excess.ma". -record lattice_ : Type ≝ { - l_carr: apartness; - l_meet: l_carr → l_carr → l_carr; - l_meet_refl: ∀x.l_meet x x ≈ x; - l_meet_comm: ∀x,y:l_carr. l_meet x y ≈ l_meet y x; - l_meet_assoc: ∀x,y,z:l_carr. l_meet x (l_meet y z) ≈ l_meet (l_meet x y) z; - l_strong_extm: ∀x.strong_ext ? (l_meet x) +record directed : Type ≝ { + dir_carr: apartness; + dir_op: dir_carr → dir_carr → dir_carr; + dir_op_refl: ∀x.dir_op x x ≈ x; + dir_op_comm: ∀x,y:dir_carr. dir_op x y ≈ dir_op y x; + dir_op_assoc: ∀x,y,z:dir_carr. dir_op x (dir_op y z) ≈ dir_op (dir_op x y) z; + dir_strong_extop: ∀x.strong_ext ? (dir_op x) }. -definition excl ≝ λl:lattice_.λa,b:l_carr l.ap_apart (l_carr l) a (l_meet l a b). +definition excl ≝ + λl:directed.λa,b:dir_carr l.ap_apart (dir_carr l) a (dir_op l a b). -lemma excess_of_lattice_: lattice_ → excess. -intro l; apply (mk_excess (l_carr l) (excl l)); -[ intro x; unfold; intro H; unfold in H; apply (ap_coreflexive (l_carr l) x); - apply (ap_rewr ??? (l_meet l x x) (l_meet_refl ? x)); assumption; +lemma excess_of_directed: directed → excess. +intro l; apply (mk_excess (dir_carr l) (excl l)); +[ intro x; unfold; intro H; unfold in H; apply (ap_coreflexive (dir_carr l) x); + apply (ap_rewr ??? (dir_op l x x) (dir_op_refl ? x)); assumption; | intros 3 (x y z); unfold excl; intro H; - cases (ap_cotransitive ??? (l_meet l (l_meet l x z) y) H) (H1 H2); [2: - left; apply ap_symmetric; apply (l_strong_extm ? y); - apply (ap_rewl ???? (l_meet_comm ???)); - apply (ap_rewr ???? (l_meet_comm ???)); + cases (ap_cotransitive ??? (dir_op l (dir_op l x z) y) H) (H1 H2); [2: + left; apply ap_symmetric; apply (dir_strong_extop ? y); + apply (ap_rewl ???? (dir_op_comm ???)); + apply (ap_rewr ???? (dir_op_comm ???)); assumption] - cases (ap_cotransitive ??? (l_meet l x z) H1) (H2 H3); [left; assumption] - right; apply (l_strong_extm ? x); apply (ap_rewr ???? (l_meet_assoc ????)); + cases (ap_cotransitive ??? (dir_op l x z) H1) (H2 H3); [left; assumption] + right; apply (dir_strong_extop ? x); apply (ap_rewr ???? (dir_op_assoc ????)); assumption] qed. -(* coercion cic:/matita/lattice/excess_of_lattice_.con. *) - record prelattice : Type ≝ { pl_carr:> excess; meet: pl_carr → pl_carr → pl_carr; @@ -53,8 +52,8 @@ record prelattice : Type ≝ { lem: ∀x,y.(meet x y) ≤ y }. -interpretation "Lattice meet" 'and a b = - (cic:/matita/lattice/meet.con _ a b). +interpretation "prelattice meet" 'and a b = + (cic:/matita/lattice/meet.con _ a b). lemma feq_ml: ∀ml:prelattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; @@ -67,87 +66,117 @@ apply (Eq≈ ? (meet_comm ???)); apply (Eq≈ ?? (meet_comm ???)); apply feq_ml; assumption; qed. -lemma prelattice_of_lattice_: lattice_ → prelattice. -intro l_; apply (mk_prelattice (excess_of_lattice_ l_)); [apply (l_meet l_);] -unfold excess_of_lattice_; try unfold apart_of_excess; simplify; +lemma prelattice_of_directed: directed → prelattice. +intro l_; apply (mk_prelattice (excess_of_directed l_)); [apply (dir_op l_);] +unfold excess_of_directed; try unfold apart_of_excess; simplify; unfold excl; simplify; [intro x; intro H; elim H; clear H; - [apply (l_meet_refl l_ x); - lapply (Ap≫ ? (l_meet_comm ???) t) as H; clear t; - lapply (l_strong_extm l_ ??? H); apply ap_symmetric; assumption - | lapply (Ap≪ ? (l_meet_refl ?x) t) as H; clear t; - lapply (l_strong_extm l_ ??? H); apply (l_meet_refl l_ x); + [apply (dir_op_refl l_ x); + lapply (Ap≫ ? (dir_op_comm ???) t) as H; clear t; + lapply (dir_strong_extop l_ ??? H); apply ap_symmetric; assumption + | lapply (Ap≪ ? (dir_op_refl ?x) t) as H; clear t; + lapply (dir_strong_extop l_ ??? H); apply (dir_op_refl l_ x); apply ap_symmetric; assumption] |intros 3 (x y H); cases H (H1 H2); clear H; - [lapply (Ap≪ ? (l_meet_refl ? (l_meet l_ x y)) H1) as H; clear H1; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (l_meet_comm ???) H1); apply (ap_coreflexive ?? Hletin); - |lapply (Ap≪ ? (l_meet_refl ? (l_meet l_ y x)) H2) as H; clear H2; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (l_meet_comm ???) H1);apply (ap_coreflexive ?? Hletin);] + [lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ x y)) H1) as H; clear H1; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (dir_op_comm ???) H1); apply (ap_coreflexive ?? Hletin); + |lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ y x)) H2) as H; clear H2; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (dir_op_comm ???) H1);apply (ap_coreflexive ?? Hletin);] |intros 4 (x y z H); cases H (H1 H2); clear H; - [lapply (Ap≪ ? (l_meet_refl ? (l_meet l_ x (l_meet l_ y z))) H1) as H; clear H1; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (eq_sym ??? (l_meet_assoc ?x y z)) H1) as H; clear H1; + [lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ x (dir_op l_ y z))) H1) as H; clear H1; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (eq_sym ??? (dir_op_assoc ?x y z)) H1) as H; clear H1; apply (ap_coreflexive ?? H); - |lapply (Ap≪ ? (l_meet_refl ? (l_meet l_ (l_meet l_ x y) z)) H2) as H; clear H2; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (l_meet_assoc ?x y z) H1) as H; clear H1; + |lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ (dir_op l_ x y) z)) H2) as H; clear H2; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (dir_op_assoc ?x y z) H1) as H; clear H1; apply (ap_coreflexive ?? H);] |intros (x y z H); elim H (H1 H1); clear H; - lapply (Ap≪ ? (l_meet_refl ??) H1) as H; clear H1; - lapply (l_strong_extm l_ ??? H) as H1; clear H; - lapply (l_strong_extm l_ ??? H1) as H; clear H1; - cases (ap_cotransitive ??? (l_meet l_ y z) H);[left|right|right|left] try assumption; - [apply ap_symmetric;apply (Ap≪ ? (l_meet_comm ???)); - |apply (Ap≫ ? (l_meet_comm ???)); + lapply (Ap≪ ? (dir_op_refl ??) H1) as H; clear H1; + lapply (dir_strong_extop l_ ??? H) as H1; clear H; + lapply (dir_strong_extop l_ ??? H1) as H; clear H1; + cases (ap_cotransitive ??? (dir_op l_ y z) H);[left|right|right|left] try assumption; + [apply ap_symmetric;apply (Ap≪ ? (dir_op_comm ???)); + |apply (Ap≫ ? (dir_op_comm ???)); |apply ap_symmetric;] assumption; |intros 4 (x y H H1); apply H; clear H; elim H1 (H H); - lapply (Ap≪ ? (l_meet_refl ??) H) as H1; clear H; - lapply (l_strong_extm l_ ??? H1) as H; clear H1;[2: apply ap_symmetric] + lapply (Ap≪ ? (dir_op_refl ??) H) as H1; clear H; + lapply (dir_strong_extop l_ ??? H1) as H; clear H1;[2: apply ap_symmetric] assumption |intros 3 (x y H); - cut (l_meet l_ x y ≈ l_meet l_ x (l_meet l_ y y)) as H1;[2: - intro; lapply (l_strong_extm ???? a); apply (l_meet_refl l_ y); + cut (dir_op l_ x y ≈ dir_op l_ x (dir_op l_ y y)) as H1;[2: + intro; lapply (dir_strong_extop ???? a); apply (dir_op_refl l_ y); apply ap_symmetric; assumption;] - lapply (Ap≪ ? (eq_sym ??? H1) H); apply (l_meet_assoc l_ x y y); + lapply (Ap≪ ? (eq_sym ??? H1) H); apply (dir_op_assoc l_ x y y); assumption; ] qed. -record lattice : Type ≝ { - lat_carr:> prelattice; - join: lat_carr → lat_carr → lat_carr; - join_refl: ∀x.join x x ≈ x; - join_comm: ∀x,y:lat_carr. join x y ≈ join y x; - join_assoc: ∀x,y,z:lat_carr. join x (join y z) ≈ join (join x y) z; - absorbjm: ∀f,g:lat_carr. join f (meet ? f g) ≈ f; - absorbmj: ∀f,g:lat_carr. meet ? f (join f g) ≈ f; - strong_extj: ∀x.strong_ext ? (join x) +record lattice_ : Type ≝ { + latt_mcarr:> prelattice; + latt_jcarr_: prelattice; + latt_with: pl_carr latt_jcarr_ = dual_exc (pl_carr latt_mcarr) }. +lemma latt_jcarr : lattice_ → prelattice. +intro l; +apply (mk_prelattice (dual_exc l)); unfold excess_OF_lattice_; +cases (latt_with l); simplify; +[apply meet|apply meet_refl|apply meet_comm|apply meet_assoc| +apply strong_extm| apply le_to_eqm|apply lem] +qed. + +coercion cic:/matita/lattice/latt_jcarr.con. + +interpretation "Lattice meet" 'and a b = + (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_mcarr.con _) a b). + interpretation "Lattice join" 'or a b = - (cic:/matita/lattice/join.con _ a b). + (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_jcarr.con _) a b). -lemma feq_jl: ∀ml:lattice.∀a,b,c:ml. a ≈ b → (c ∨ a) ≈ (c ∨ b). -intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; -intro H1; apply H; clear H; apply (strong_extj ???? H1); -qed. +record lattice : Type ≝ { + latt_carr:> lattice_; + absorbjm: ∀f,g:latt_carr. (f ∨ (f ∧ g)) ≈ f; + absorbmj: ∀f,g:latt_carr. (f ∧ (f ∨ g)) ≈ f +}. -lemma feq_jr: ∀ml:lattice.∀a,b,c:ml. a ≈ b → (a ∨ c) ≈ (b ∨ c). -intros (l a b c H); apply (Eq≈ ? (join_comm ???)); apply (Eq≈ ?? (join_comm ???)); -apply (feq_jl ???? H); -qed. +notation "'meet'" non associative with precedence 50 for @{'meet}. +notation "'meet_refl'" non associative with precedence 50 for @{'meet_refl}. +notation "'meet_comm'" non associative with precedence 50 for @{'meet_comm}. +notation "'meet_assoc'" non associative with precedence 50 for @{'meet_assoc}. +notation "'strong_extm'" non associative with precedence 50 for @{'strong_extm}. +notation "'le_to_eqm'" non associative with precedence 50 for @{'le_to_eqm}. +notation "'lem'" non associative with precedence 50 for @{'lem}. +notation "'join'" non associative with precedence 50 for @{'join}. +notation "'join_refl'" non associative with precedence 50 for @{'join_refl}. +notation "'join_comm'" non associative with precedence 50 for @{'join_comm}. +notation "'join_assoc'" non associative with precedence 50 for @{'join_assoc}. +notation "'strong_extj'" non associative with precedence 50 for @{'strong_extj}. +notation "'le_to_eqj'" non associative with precedence 50 for @{'le_to_eqj}. +notation "'lej'" non associative with precedence 50 for @{'lej}. -lemma le_to_eqj: ∀ml:lattice.∀a,b:ml. a ≤ b → b ≈ (a ∨ b). -intros (l a b H); lapply (le_to_eqm ??? H) as H1; -lapply (feq_jl ??? b H1) as H2; -apply (Eq≈ ?? (join_comm ???)); -apply (Eq≈ (b∨a∧b) ? H2); clear H1 H2 H; -apply (Eq≈ (b∨(b∧a)) ? (feq_jl ???? (meet_comm ???))); -apply eq_sym; apply absorbjm; -qed. +interpretation "Lattice meet" 'meet = (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_refl" 'meet_refl = (cic:/matita/lattice/meet_refl.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_comm" 'meet_comm = (cic:/matita/lattice/meet_comm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice meet_assoc" 'meet_assoc = (cic:/matita/lattice/meet_assoc.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extm = (cic:/matita/lattice/strong_extm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice le_to_eqm" 'le_to_eqm = (cic:/matita/lattice/le_to_eqm.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice lem" 'lem = (cic:/matita/lattice/lem.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice join" 'join = (cic:/matita/lattice/meet.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_refl" 'join_refl = (cic:/matita/lattice/meet_refl.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_comm" 'join_comm = (cic:/matita/lattice/meet_comm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice join_assoc" 'join_assoc = (cic:/matita/lattice/meet_assoc.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice strong_extm" 'strong_extj = (cic:/matita/lattice/strong_extm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice le_to_eqj" 'le_to_eqj = (cic:/matita/lattice/le_to_eqm.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice lej" 'lej = (cic:/matita/lattice/lem.con (cic:/matita/lattice/latt_jcarr.con _)). + +notation "'feq_jl'" non associative with precedence 50 for @{'feq_jl}. +notation "'feq_jr'" non associative with precedence 50 for @{'feq_jr}. +interpretation "Lattice feq_jl" 'feq_jl = (cic:/matita/lattice/feq_ml.con (cic:/matita/lattice/latt_jcarr.con _)). +interpretation "Lattice feq_jr" 'feq_jr = (cic:/matita/lattice/feq_mr.con (cic:/matita/lattice/latt_jcarr.con _)). +notation "'feq_ml'" non associative with precedence 50 for @{'feq_ml}. +notation "'feq_mr'" non associative with precedence 50 for @{'feq_mr}. +interpretation "Lattice feq_ml" 'feq_ml = (cic:/matita/lattice/feq_ml.con (cic:/matita/lattice/latt_mcarr.con _)). +interpretation "Lattice feq_mr" 'feq_mr = (cic:/matita/lattice/feq_mr.con (cic:/matita/lattice/latt_mcarr.con _)). -lemma lej: ∀l:lattice.∀x,y:l.x ≤ (x ∨ y). -intros (l x y); -apply (Le≪ ? (absorbmj ? x y)); apply lem; -qed. \ No newline at end of file