X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Flattice.ma;h=78046c688ead8c5561ad629785fce67f98ea52c1;hb=5b83f526bc4c63424313df91173b844699eada96;hp=ef02134256330b43f7a4006fed38a7702a9546a6;hpb=9483f7e6c85ec11f88bdb219b2cebad2039b1a74;p=helm.git diff --git a/helm/software/matita/dama/lattice.ma b/helm/software/matita/dama/lattice.ma index ef0213425..78046c688 100644 --- a/helm/software/matita/dama/lattice.ma +++ b/helm/software/matita/dama/lattice.ma @@ -30,8 +30,8 @@ lemma excess_of_semi_lattice_base: semi_lattice_base → excess. intro l; apply mk_excess; [1: apply mk_excess_; - [1: - + [1: apply mk_excess_dual_smart; + apply (mk_excess_base (sl_carr l)); [1: apply (λa,b:sl_carr l.a # (a ✗ b)); |2: unfold; intros 2 (x H); simplify in H; @@ -161,22 +161,216 @@ unfold excl; simplify; qed. *) +(* ED(≰,≱) → EB(≰') → ED(≰',≱') *) +lemma subst_excess_base: excess_dual → excess_base → excess_dual. +intros; apply (mk_excess_dual_smart e1); +qed. + +(* E_(ED(≰,≱),AP(#),c ED = c AP) → ED' → c DE' = c E_ → E_(ED',#,p) *) +lemma subst_dual_excess: ∀e:excess_.∀e1:excess_dual.exc_carr e = exc_carr e1 → excess_. +intros (e e1 p); apply (mk_excess_ e1 e); cases p; reflexivity; +qed. + +(* E(E_,H1,H2) → E_' → H1' → H2' → E(E_',H1',H2') *) +alias symbol "nleq" = "Excess excess_". +lemma subst_excess_: ∀e:excess. ∀e1:excess_. + (∀y,x:e1. y # x → y ≰ x ∨ x ≰ y) → + (∀y,x:e1.y ≰ x ∨ x ≰ y → y # x) → + excess. +intros (e e1 H1 H2); apply (mk_excess e1 H1 H2); +qed. + +definition hole ≝ λT:Type.λx:T.x. + +notation < "\ldots" non associative with precedence 50 for @{'hole}. +interpretation "hole" 'hole = (cic:/matita/lattice/hole.con _ _). + + +axiom FALSE : False. + +(* SL(E,M,H2-5(#),H67(≰)) → E' → c E = c E' → H67'(≰') → SL(E,M,p2-5,H67') *) +lemma subst_excess: + ∀l:semi_lattice. + ∀e:excess. + ∀p:exc_ap l = exc_ap e. + (∀x,y:e.(le (exc_dual_base e)) x y → x ≈ (?(sl_meet l)) x y) → + (∀x,y:e.(le (exc_dual_base e)) ((?(sl_meet l)) x y) y) → + semi_lattice. +[1,2:intro M; + change with ((λx.ap_carr x) e -> (λx.ap_carr x) e -> (λx.ap_carr x) e); + cases p; apply M; +|intros (l e p H1 H2); + apply (mk_semi_lattice e); + [ change with ((λx.ap_carr x) e -> (λx.ap_carr x) e -> (λx.ap_carr x) e); + cases p; simplify; apply (sl_meet l); + |2: change in ⊢ (% → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_meet_refl; + |3: change in ⊢ (% → % → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_meet_comm; + |4: change in ⊢ (% → % → % → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_meet_assoc; + |5: change in ⊢ (% → ?) with ((λx.ap_carr x) e); cases p; simplify; apply sl_strong_extm; + |6: clear H2; apply hole; apply H1; + |7: clear H1; apply hole; apply H2;]] +qed. + +lemma excess_of_excess_base: excess_base → excess. +intro eb; +apply mk_excess; + [apply (mk_excess_ (mk_excess_dual_smart eb)); + [apply (apartness_of_excess_base eb); + |reflexivity] + |2,3: intros; assumption] +qed. + +lemma subst_excess_preserves_aprtness: + ∀l:semi_lattice. + ∀e:excess. + ∀p,H1,H2. + exc_ap l = exc_ap (subst_excess l e p H1 H2). +intros; +unfold subst_excess; +simplify; assumption; +qed. + + +lemma subst_excess__preserves_aprtness: + ∀l:excess. + ∀e:excess_base. + ∀p,H1,H2. + exc_ap l = apartness_OF_excess (subst_excess_ l (subst_dual_excess l (subst_excess_base l e) p) H1 H2). +intros 3; (unfold subst_excess_; unfold subst_dual_excess; unfold subst_excess_base; unfold exc_ap; unfold mk_excess_dual_smart; simplify); +(unfold subst_excess_base in p; unfold mk_excess_dual_smart in p; simplify in p); +intros; cases p; +reflexivity; +qed. + +lemma subst_excess_base_in_excess_: + ∀d:excess_. + ∀eb:excess_base. + ∀p:exc_carr d = exc_carr eb. + excess_. +intros (e_ eb); +apply (subst_dual_excess e_); + [apply (subst_excess_base e_ eb); + |assumption] +qed. + +lemma subst_excess_base_in_excess: + ∀d:excess. + ∀eb:excess_base. + ∀p:exc_carr d = exc_carr eb. + (∀y1,x1:eb. (?(ap_apart d)) y1 x1 → y1 ≰ x1 ∨ x1 ≰ y1) → + (∀y2,x2:eb.y2 ≰ x2 ∨ x2 ≰ y2 → (?(ap_apart d)) y2 x2) → + excess. +[1,3,4:apply Type|2,5:intro f; cases p; apply f] +intros (d eb p H1 H2); +apply (subst_excess_ d); + [apply (subst_excess_base_in_excess_ d eb p); + |apply hole; clear H2; + change in ⊢ (%→%→?) with (exc_carr eb); + change in ⊢ (?→?→?→? (? % ? ?) (? % ? ?)) with eb; intros (y x H3); + apply H1; generalize in match H3; + unfold ap_apart; unfold subst_excess_base_in_excess_; + unfold subst_dual_excess; simplify; + generalize in match x; + generalize in match y; + cases p; simplify; intros; assumption; + |apply hole; clear H1; + change in ⊢ (%→%→?) with (exc_carr eb); + change in ⊢ (?→?→? (? % ? ?) (? % ? ?)→?) with eb; intros (y x H3); + unfold ap_apart; unfold subst_excess_base_in_excess_; + unfold subst_dual_excess; simplify; generalize in match (H2 ?? H3); + generalize in match x; generalize in match y; cases p; + intros; assumption;] +qed. + +lemma tech1: ∀e:excess. + ∀eb:excess_base. + ∀p,H1,H2. + exc_ap e = exc_ap_ (subst_excess_base_in_excess e eb p H1 H2). +intros (e eb p H1 H2); +unfold subst_excess_base_in_excess; +unfold subst_excess_; simplify; +unfold subst_excess_base_in_excess_; +unfold subst_dual_excess; simplify; reflexivity; +qed. + +lemma tech2: + ∀e:excess_.∀eb.∀p. + exc_ap e = exc_ap (mk_excess_ (subst_excess_base e eb) (exc_ap e) p). +intros (e eb p);unfold exc_ap; simplify; cases p; simplify; reflexivity; +qed. + +(* +lemma eq_fap: + ∀a1,b1,a2,b2,a3,b3,a4,b4,a5,b5. + a1=b1 → a2=b2 → a3=b3 → a4=b4 → a5=b5 → mk_apartness a1 a2 a3 a4 a5 = mk_apartness b1 b2 b3 b4 b5. +intros; cases H; cases H1; cases H2; cases H3; cases H4; reflexivity; +qed. +*) + +lemma subst_excess_base_in_excess_preserves_apartness: + ∀e:excess. + ∀eb:excess_base. + ∀H,H1,H2. + apartness_OF_excess e = + apartness_OF_excess (subst_excess_base_in_excess e eb H H1 H2). +intros (e eb p H1 H2); +unfold subst_excess_base_in_excess; +unfold subst_excess_; unfold subst_excess_base_in_excess_; +unfold subst_dual_excess; unfold apartness_OF_excess; +simplify in ⊢ (? ? ? (? %)); +rewrite < (tech2 e eb ); +reflexivity; +qed. + + + +alias symbol "nleq" = "Excess base excess". +lemma subst_excess_base_in_semi_lattice: + ∀sl:semi_lattice. + ∀eb:excess_base. + ∀p:exc_carr sl = exc_carr eb. + (∀y1,x1:eb. (?(ap_apart sl)) y1 x1 → y1 ≰ x1 ∨ x1 ≰ y1) → + (∀y2,x2:eb.y2 ≰ x2 ∨ x2 ≰ y2 → (?(ap_apart sl)) y2 x2) → + (∀x3,y3:eb.(le eb) x3 y3 → (?(eq sl)) x3 ((?(sl_meet sl)) x3 y3)) → + (∀x4,y4:eb.(le eb) ((?(sl_meet sl)) x4 y4) y4) → + semi_lattice. +[2:apply Prop|3,7,9,10:apply Type|4:apply (exc_carr eb)|1,5,6,8,11:intro f; cases p; apply f;] +intros (sl eb H H1 H2 H3 H4); +apply (subst_excess sl); + [apply (subst_excess_base_in_excess sl eb H H1 H2); + |apply subst_excess_base_in_excess_preserves_apartness; + |change in ⊢ (%→%→?) with ((λx.ap_carr x) (subst_excess_base_in_excess (sl_exc sl) eb H H1 H2)); simplify; + intros 3 (x y LE); + generalize in match (H3 ?? LE); + generalize in match H1 as H1;generalize in match H2 as H2; + generalize in match x as x; generalize in match y as y; + cases FALSE; + (* + (reduce in H ⊢ %; cases H; simplify; intros; assumption); + + + cases (subst_excess_base_in_excess_preserves_apartness (sl_exc sl) eb H H1 H2); simplify; + change in x:(%) with (exc_carr eb); + change in y:(%) with (exc_carr eb); + generalize in match OK; generalize in match x as x; generalize in match y as y; + cases H; simplify; (* funge, ma devo fare 2 rewrite in un colpo solo *) + *) + |cases FALSE; + ] +qed. record lattice_ : Type ≝ { latt_mcarr:> semi_lattice; latt_jcarr_: semi_lattice; - latt_with: sl_exc latt_jcarr_ = dual_exc (sl_exc latt_mcarr) + W1:?; W2:?; W3:?; W4:?; W5:?; + latt_with1: latt_jcarr_ = subst_excess_base_in_semi_lattice latt_jcarr_ + (excess_base_OF_semi_lattice latt_mcarr) W1 W2 W3 W4 W5 }. lemma latt_jcarr : lattice_ → semi_lattice. -intro l; -apply (mk_semi_lattice (dual_exc l)); -unfold excess_OF_lattice_; -cases (latt_with l); simplify; -[apply sl_meet|apply sl_meet_refl|apply sl_meet_comm|apply sl_meet_assoc| -apply sl_strong_extm| apply sl_le_to_eqm|apply sl_lem] -qed. - +intro l; apply (subst_excess_base_in_semi_lattice (latt_jcarr_ l) (excess_base_OF_semi_lattice (latt_mcarr l)) (W1 l) (W2 l) (W3 l) (W4 l) (W5 l)); +qed. + coercion cic:/matita/lattice/latt_jcarr.con. interpretation "Lattice meet" 'and a b =