X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fmetric_lattice.ma;h=0bfc3db678179c3ceedaab49b34ff762961f6f75;hb=892992b24f5476c2b4eed13f64e04854ef919020;hp=ae55b5551dae807bd16ab72fae962914c0e70b4d;hpb=feaabb3c45906fafb4b6eb3fb10add6e6da6069b;p=helm.git diff --git a/helm/software/matita/dama/metric_lattice.ma b/helm/software/matita/dama/metric_lattice.ma index ae55b5551..0bfc3db67 100644 --- a/helm/software/matita/dama/metric_lattice.ma +++ b/helm/software/matita/dama/metric_lattice.ma @@ -33,24 +33,20 @@ qed. coercion cic:/matita/metric_lattice/ml_mspace.con. -record is_mlattice (R : todgroup) (ml: mlattice_ R) : Type ≝ { - ml_prop1: ∀a,b:ml. 0 < δ a b → a # b; - ml_prop2: ∀a,b,c:ml. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c -}. - record mlattice (R : todgroup) : Type ≝ { ml_carr :> mlattice_ R; - ml_props:> is_mlattice R ml_carr + ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b; + ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c }. lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b. -intros (R ml a b E); intro H; apply E; apply (ml_prop1 ?? ml); +intros (R ml a b E); intro H; apply E; apply ml_prop1; assumption; qed. lemma eq_to_dzero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0. intros (R ml x y H); intro H1; apply H; clear H; -apply (ml_prop1 ?? ml); split [apply mpositive] apply ap_symmetric; +apply ml_prop1; split [apply mpositive] apply ap_symmetric; assumption; qed. @@ -76,7 +72,7 @@ intros; split [apply mpositive] apply ap_symmetric; assumption; qed. lemma dap_to_ap: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → x # y. -intros (R ml x y H); apply (ml_prop1 ?? ml); split; [apply mpositive;] +intros (R ml x y H); apply ml_prop1; split; [apply mpositive;] apply ap_symmetric; assumption; qed. @@ -84,109 +80,24 @@ qed. lemma le_mtri: ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] -apply (le_transitive ????? (ml_prop2 ?? ml (y) ??)); +apply (le_transitive ????? (ml_prop2 ?? (y) ??)); cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] lapply (le_to_eqm ??? Lxy) as Dxm; lapply (le_to_eqm ??? Lyz) as Dym; lapply (le_to_eqj ??? Lxy) as Dxj; lapply (le_to_eqj ??? Lyz) as Dyj; clear Lxy Lyz; -apply (Eq≈ (δ(x∧y) y + δy z)); [apply feq_plusr; apply (meq_l ????? Dxm);] -apply (Eq≈ (δ(x∧y) (y∧z) + δy z)); [apply feq_plusr; apply (meq_r ????? Dym);] -apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) z)); [apply feq_plusl; apply (meq_l ????? Dxj);] -apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) (y∨z))); [apply feq_plusl; apply (meq_r ????? Dyj);] +apply (Eq≈ (δ(x∧y) y + δy z) (meq_l ????? Dxm)); +apply (Eq≈ (δ(x∧y) (y∧z) + δy z) (meq_r ????? Dym)); +apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) z) (meq_l ????? Dxj)); +apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) (y∨z))); [ + apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (x∨y) ? Dyj));] apply (Eq≈ ? (plus_comm ???)); -apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z))); [apply feq_plusr; apply (meq_l ????? (join_comm ???));] +apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)) (meq_l ????? (join_comm ?x y))); apply feq_plusl; -apply (Eq≈ (δ(y∧x) (y∧z))); [apply (meq_l ????? (meet_comm ???));] +apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm ?x y))); apply eq_reflexive; qed. -include "sequence.ma". -include "nat/plus.ma". - -lemma ltwl: ∀a,b,c:nat. b + a < c → a < c. -intros 3 (x y z); elim y (H z IH H); [apply H] -apply IH; apply lt_S_to_lt; apply H; -qed. - -lemma ltwr: ∀a,b,c:nat. a + b < c → a < c. -intros 3 (x y z); rewrite > sym_plus; apply ltwl; -qed. - - -definition d2s ≝ - λR.λml:mlattice R.λs:sequence ml.λk.λn. δ (s n) k. -(* -notation "s ⇝ 'Zero'" non associative with precedence 50 for @{'tends0 $s }. - -interpretation "tends to" 'tends s x = - (cic:/matita/sequence/tends0.con _ s). -*) - -axiom core1: ∀G:todgroup.∀e:G.0