X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fmetric_lattice.ma;h=81eab3137e9f121d28f84a96e4f29c9b4b62b129;hb=a1f4ef3daaeed7a3121a40afe55f321565669da8;hp=56120525d8cf3d794f6889000b7cbc1e12f8a995;hpb=9d60f524ea49744e5339a3da981a7263ea92ace6;p=helm.git diff --git a/helm/software/matita/dama/metric_lattice.ma b/helm/software/matita/dama/metric_lattice.ma index 56120525d..81eab3137 100644 --- a/helm/software/matita/dama/metric_lattice.ma +++ b/helm/software/matita/dama/metric_lattice.ma @@ -43,23 +43,167 @@ record mlattice (R : ogroup) : Type ≝ { ml_props:> is_mlattice R ml_carr }. -axiom meq_joinl: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y. +lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b. +intros (R ml a b E); intro H; apply E; apply (ml_prop1 ?? ml); +assumption; +qed. + +lemma eq_to_dzero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0. +intros (R ml x y H); intro H1; apply H; clear H; +apply (ml_prop1 ?? ml); split [apply mpositive] apply ap_symmetric; +assumption; +qed. -lemma meq_joinr: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. +lemma meq_l: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y. +intros (R ml x y z); apply le_le_eq; +[ apply (le_transitive ???? (mtineq ???y z)); + apply (le_rewl ??? (0+δz y) (eq_to_dzero ???? H)); + apply (le_rewl ??? (δz y) (zero_neutral ??)); apply le_reflexive; +| apply (le_transitive ???? (mtineq ???y x)); + apply (le_rewl ??? (0+δx y) (eq_to_dzero ??z x H)); + apply (le_rewl ??? (δx y) (zero_neutral ??)); apply le_reflexive;] +qed. + +(* 3.3 *) +lemma meq_r: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. intros; apply (eq_trans ???? (msymmetric ??y x)); -apply (eq_trans ????? (msymmetric ??z y)); apply meq_joinl; assumption; +apply (eq_trans ????? (msymmetric ??z y)); apply meq_l; assumption; qed. + -(* -lemma foo: ∀R.∀ml:mlattice R.∀x,y,z:ml. δx y ≈ δ(y∨x) (y∨z). -intros; apply le_le_eq; [ - apply (le_rewr ???? (meq_joinl ????? (join_comm ???))); - apply (le_rewr ???? (meq_joinr ????? (join_comm ???))); -*) +lemma dap_to_lt: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → 0 < δ x y. +intros; split [apply mpositive] apply ap_symmetric; assumption; +qed. + +lemma dap_to_ap: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → x # y. +intros (R ml x y H); apply (ml_prop1 ?? ml); split; [apply mpositive;] +apply ap_symmetric; assumption; +qed. (* 3.11 *) lemma le_mtri: ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] -apply (le_transitive ????? (ml_prop2 ?? ml (y∧x) ??)); -(* auto type. assert failure *) +apply (le_transitive ????? (ml_prop2 ?? ml (y) ??)); +cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ + apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] +lapply (le_to_eqm ??? Lxy) as Dxm; lapply (le_to_eqm ??? Lyz) as Dym; +lapply (le_to_eqj ??? Lxy) as Dxj; lapply (le_to_eqj ??? Lyz) as Dyj; clear Lxy Lyz; +apply (Eq≈ (δ(x∧y) y + δy z)); [apply feq_plusr; apply (meq_l ????? Dxm);] +apply (Eq≈ (δ(x∧y) (y∧z) + δy z)); [apply feq_plusr; apply (meq_r ????? Dym);] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) z)); [apply feq_plusl; apply (meq_l ????? Dxj);] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) (y∨z))); [apply feq_plusl; apply (meq_r ????? Dyj);] +apply (Eq≈ ? (plus_comm ???)); +apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z))); [apply feq_plusr; apply (meq_l ????? (join_comm ???));] +apply feq_plusl; +apply (Eq≈ (δ(y∧x) (y∧z))); [apply (meq_l ????? (meet_comm ???));] +apply eq_reflexive; +qed. + +include "sequence.ma". +include "nat/plus.ma". + +definition d2s ≝ + λR.λml:mlattice R.λs:sequence (pordered_set_of_excedence ml).λk.λn. δ (s n) k. +(* +notation "s ⇝ 'Zero'" non associative with precedence 50 for @{'tends0 $s }. + +interpretation "tends to" 'tends s x = + (cic:/matita/sequence/tends0.con _ s). +*) + +lemma lew_opp : ∀O:ogroup.∀a,b,c:O.0 ≤ b → a ≤ c → a + -b ≤ c. +intros (O a b c L0 L); +apply (le_transitive ????? L); +apply (plus_cancl_le ??? (-a)); +apply (le_rewr ??? 0 (opp_inverse ??)); +apply (le_rewl ??? (-a+a+-b) (plus_assoc ????)); +apply (le_rewl ??? (0+-b) (opp_inverse ??)); +apply (le_rewl ??? (-b) (zero_neutral ?(-b))); +apply le_zero_x_to_le_opp_x_zero; +assumption; +qed. + + +lemma ltw_opp : ∀O:ogroup.∀a,b,c:O.0 < b → a < c → a + -b < c. +intros (O a b c P L); +apply (lt_transitive ????? L); +apply (plus_cancl_lt ??? (-a)); +apply (lt_rewr ??? 0 (opp_inverse ??)); +apply (lt_rewl ??? (-a+a+-b) (plus_assoc ????)); +apply (lt_rewl ??? (0+-b) (opp_inverse ??)); +apply (lt_rewl ??? ? (zero_neutral ??)); +apply lt_zero_x_to_lt_opp_x_zero; +assumption; +qed. + +lemma ltwl: ∀a,b,c:nat. b + a < c → a < c. +intros 3 (x y z); elim y (H z IH H); [apply H] +apply IH; apply lt_S_to_lt; apply H; +qed. + +lemma ltwr: ∀a,b,c:nat. a + b < c → a < c. +intros 3 (x y z); rewrite > sym_plus; apply ltwl; +qed. + +alias symbol "leq" = "ordered sets less or equal than". +alias symbol "and" = "constructive and". +alias symbol "exists" = "constructive exists (Type)". +theorem carabinieri: (* non trova la coercion .... *) + ∀R.∀ml:mlattice R.∀an,bn,xn:sequence (pordered_set_of_excedence ml). + (∀n. (an n ≤ xn n) ∧ (xn n ≤ bn n)) → + ∀x:ml. tends0 ? (d2s ? ml an x) → tends0 ? (d2s ? ml bn x) → + tends0 ? (d2s ? ml xn x). +intros (R ml an bn xn H x Ha Hb); unfold tends0 in Ha Hb ⊢ %. unfold d2s in Ha Hb ⊢ %. +intros (e He); +elim (Ha ? He) (n1 H1); clear Ha; elim (Hb e He) (n2 H2); clear Hb; +constructor 1; [apply (n1 + n2);] intros (n3 Hn3); +lapply (ltwr ??? Hn3) as Hn1n3; lapply (ltwl ??? Hn3) as Hn2n3; +elim (H1 ? Hn1n3) (H3 H4); elim (H2 ? Hn2n3) (H5 H6); clear Hn1n3 Hn2n3; +elim (H n3) (H7 H8); clear H H1 H2; +lapply (le_to_eqm ??? H7) as Dxm; lapply (le_to_eqj ??? H7) as Dym; +(* the main step *) +cut (δ (xn n3) x ≤ δ (bn n3) x + δ (an n3) x + δ (an n3) x); [2: + apply (le_transitive ???? (mtineq ???? (an n3))); + lapply (le_mtri ????? H7 H8); + lapply (feq_plusr ? (- δ(xn n3) (bn n3)) ?? Hletin); + cut ( δ(an n3) (bn n3)+- δ(xn n3) (bn n3)≈( δ(an n3) (xn n3))); [2: + apply (Eq≈  (0 + δ(an n3) (xn n3)) ? (zero_neutral ??)); + apply (Eq≈  (δ(an n3) (xn n3) + 0) ? (plus_comm ???)); + apply (Eq≈  (δ(an n3) (xn n3) +  (-δ(xn n3) (bn n3) +  δ(xn n3) (bn n3))) ? (opp_inverse ??)); + apply (Eq≈  (δ(an n3) (xn n3) +  (δ(xn n3) (bn n3) + -δ(xn n3) (bn n3))) ? (plus_comm ?? (δ(xn n3) (bn n3)))); + apply (Eq≈  ? ? (eq_sym ??? (plus_assoc ????))); assumption;] clear Hletin1; + apply (le_rewl ???  ( δ(an n3) (xn n3)+ δ(an n3) x));[ + apply feq_plusr; apply msymmetric;] + apply (le_rewl ???  (δ(an n3) (bn n3)+- δ(xn n3) (bn n3)+ δ(an n3) x));[ + apply feq_plusr; assumption;] + clear Hcut Hletin Dym Dxm H8 H7 H6 H5 H4 H3; + apply (le_rewl ??? (- δ(xn n3) (bn n3)+ δ(an n3) (bn n3)+δ(an n3) x));[ + apply feq_plusr; apply plus_comm;] + apply (le_rewl ??? (- δ(xn n3) (bn n3)+ (δ(an n3) (bn n3)+δ(an n3) x)) (plus_assoc ????)); + apply (le_rewl ??? ((δ(an n3) (bn n3)+δ(an n3) x)+- δ(xn n3) (bn n3)) (plus_comm ???)); + apply lew_opp; [apply mpositive] apply fle_plusr; + apply (le_rewr ???? (plus_comm ???)); + apply (le_rewr ??? ( δ(an n3) x+ δx (bn n3)) (msymmetric ????)); + apply mtineq;] +split; [ + apply (lt_le_transitive ????? (mpositive ????)); + split; elim He; [apply le_zero_x_to_le_opp_x_zero; assumption;] + cases t1; [ + left; apply exc_zero_opp_x_to_exc_x_zero; + apply (Ex≫ ? (eq_opp_opp_x_x ??));assumption;] + right; apply exc_opp_x_zero_to_exc_zero_x; + apply (Ex≪ ? (eq_opp_opp_x_x ??)); assumption;] +clear Dxm Dym H7 H8 Hn3 H5 H3 n1 n2; + + +(* 3.17 conclusione: δ x y ≈ 0 *) +(* 3.20 conclusione: δ x y ≈ 0 *) +(* 3.21 sup forte + strong_sup x ≝ ∀n. s n ≤ x ∧ ∀y x ≰ y → ∃n. s n ≰ y + strong_sup_zoli x ≝ ∀n. s n ≤ x ∧ ∄y. y#x ∧ y ≤ x +*) +(* 3.22 sup debole (più piccolo dei maggioranti) *) +(* 3.23 conclusion: δ x sup(...) ≈ 0 *) +(* 3.25 vero nel reticolo e basta (niente δ) *) +(* 3.36 conclusion: δ x y ≈ 0 *) \ No newline at end of file