X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fmetric_lattice.ma;h=968ae8f3b65515e9e1411fac2530981e949a52a9;hb=55dc87ec418b5b8afe10164cfc61b5ad80a88e6c;hp=6028ada59748c3659533fb48b5fd7c02ec8b694a;hpb=194a530bca425408e72a6ea86afc2947b857da30;p=helm.git diff --git a/helm/software/matita/dama/metric_lattice.ma b/helm/software/matita/dama/metric_lattice.ma index 6028ada59..968ae8f3b 100644 --- a/helm/software/matita/dama/metric_lattice.ma +++ b/helm/software/matita/dama/metric_lattice.ma @@ -12,62 +12,130 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/metric_lattice/". - include "metric_space.ma". include "lattice.ma". -record mlattice_ (R : ogroup) : Type ≝ { +record mlattice_ (R : todgroup) : Type ≝ { ml_mspace_: metric_space R; ml_lattice:> lattice; - ml_with_: ms_carr ? ml_mspace_ = ap_carr (l_carr ml_lattice) + ml_with_: ms_carr ? ml_mspace_ = apart_of_excess (pl_carr ml_lattice) }. lemma ml_mspace: ∀R.mlattice_ R → metric_space R. -intros (R ml); apply (mk_metric_space R ml); unfold Type_OF_mlattice_; +intros (R ml); apply (mk_metric_space R (apart_of_excess ml)); +unfold apartness_OF_mlattice_; +[rewrite < (ml_with_ ? ml); apply (metric ? (ml_mspace_ ? ml))] cases (ml_with_ ? ml); simplify; -[apply (metric ? (ml_mspace_ ? ml));|apply (mpositive ? (ml_mspace_ ? ml)); -|apply (mreflexive ? (ml_mspace_ ? ml));|apply (msymmetric ? (ml_mspace_ ? ml)); -|apply (mtineq ? (ml_mspace_ ? ml))] +[apply (mpositive ? (ml_mspace_ ? ml));|apply (mreflexive ? (ml_mspace_ ? ml)); +|apply (msymmetric ? (ml_mspace_ ? ml));|apply (mtineq ? (ml_mspace_ ? ml))] qed. coercion cic:/matita/metric_lattice/ml_mspace.con. -record is_mlattice (R : ogroup) (ml: mlattice_ R) : Type ≝ { - ml_prop1: ∀a,b:ml. 0 < δ a b → a # b; - ml_prop2: ∀a,b,c:ml. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c -}. - -record mlattice (R : ogroup) : Type ≝ { +alias symbol "plus" = "Abelian group plus". +record mlattice (R : todgroup) : Type ≝ { ml_carr :> mlattice_ R; - ml_props:> is_mlattice R ml_carr + ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b; + ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c }. -lemma eq_to_zero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0. +lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b. +intros (R ml a b E); intro H; apply E; apply ml_prop1; +assumption; +qed. + +lemma eq_to_dzero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0. intros (R ml x y H); intro H1; apply H; clear H; -apply (ml_prop1 ?? ml); split [apply mpositive] apply ap_symmetric; +apply ml_prop1; split [apply mpositive] apply ap_symmetric; assumption; qed. -lemma meq_joinl: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y. +lemma meq_l: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y. intros (R ml x y z); apply le_le_eq; [ apply (le_transitive ???? (mtineq ???y z)); - apply (le_rewl ??? (0+δz y) (eq_to_zero ???? H)); + apply (le_rewl ??? (0+δz y) (eq_to_dzero ???? H)); apply (le_rewl ??? (δz y) (zero_neutral ??)); apply le_reflexive; | apply (le_transitive ???? (mtineq ???y x)); - apply (le_rewl ??? (0+δx y) (eq_to_zero ??z x H)); + apply (le_rewl ??? (0+δx y) (eq_to_dzero ??z x H)); apply (le_rewl ??? (δx y) (zero_neutral ??)); apply le_reflexive;] qed. -lemma meq_joinr: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. +(* 3.3 *) +lemma meq_r: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. intros; apply (eq_trans ???? (msymmetric ??y x)); -apply (eq_trans ????? (msymmetric ??z y)); apply meq_joinl; assumption; +apply (eq_trans ????? (msymmetric ??z y)); apply meq_l; assumption; +qed. + + +lemma dap_to_lt: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → 0 < δ x y. +intros; split [apply mpositive] apply ap_symmetric; assumption; +qed. + +lemma dap_to_ap: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → x # y. +intros (R ml x y H); apply ml_prop1; split; [apply mpositive;] +apply ap_symmetric; assumption; +qed. + +interpretation "Lattive meet le" 'leq a b = + (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice1.con _) a b). + +interpretation "Lattive join le (aka ge)" 'geq a b = + (cic:/matita/excess/le.con (cic:/matita/lattice/excess_OF_lattice.con _) a b). + +lemma le_to_ge: ∀l:lattice.∀a,b:l.a ≤ b → b ≥ a. +intros(l a b H); apply H; +qed. + +lemma ge_to_le: ∀l:lattice.∀a,b:l.b ≥ a → a ≤ b. +intros(l a b H); apply H; +qed. + +lemma eq_to_eq:∀l:lattice.∀a,b:l. + (eq (apart_of_excess (pl_carr (latt_jcarr l))) a b) → + (eq (apart_of_excess (pl_carr (latt_mcarr l))) a b). +intros 3; unfold eq; unfold apartness_OF_lattice; +unfold apartness_OF_lattice_1; unfold latt_jcarr; simplify; +unfold dual_exc; simplify; intros 2 (H H1); apply H; +cases H1;[right|left]assumption; qed. +coercion cic:/matita/metric_lattice/eq_to_eq.con nocomposites. + (* 3.11 *) lemma le_mtri: ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] -apply (le_transitive ????? (ml_prop2 ?? ml (y) ??)); -(* auto type. assert failure *) -whd; +apply (le_transitive ????? (ml_prop2 ?? (y) ??)); +cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ + apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] +lapply (le_to_eqm ?? Lxy) as Dxm; lapply (le_to_eqm ?? Lyz) as Dym; +lapply (le_to_eqj ?? (le_to_ge ??? Lxy)) as Dxj; lapply (le_to_eqj ?? (le_to_ge ??? Lyz)) as Dyj; clear Lxy Lyz; +apply (Eq≈ (δ(x∧y) y + δy z) (meq_l ????? Dxm)); +apply (Eq≈ (δ(x∧y) (y∧z) + δy z) (meq_r ????? Dym)); +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) z));[ + apply feq_plusl; apply meq_l; clear Dyj Dxm Dym; + unfold apartness_OF_mlattice1; + exact (eq_to_eq ??? Dxj);] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) (z∨y))); [ + apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (y∨x) ? Dyj));] +apply (Eq≈ ? (plus_comm ???)); +apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)));[ + apply feq_plusr; + apply meq_r; + apply (join_comm y z);] +apply feq_plusl; +apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm x y))); +apply eq_reflexive; +qed. + + +(* 3.17 conclusione: δ x y ≈ 0 *) +(* 3.20 conclusione: δ x y ≈ 0 *) +(* 3.21 sup forte + strong_sup x ≝ ∀n. s n ≤ x ∧ ∀y x ≰ y → ∃n. s n ≰ y + strong_sup_zoli x ≝ ∀n. s n ≤ x ∧ ∄y. y#x ∧ y ≤ x +*) +(* 3.22 sup debole (più piccolo dei maggioranti) *) +(* 3.23 conclusion: δ x sup(...) ≈ 0 *) +(* 3.25 vero nel reticolo e basta (niente δ) *) +(* 3.36 conclusion: δ x y ≈ 0 *)