X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fmetric_lattice.ma;h=f0242da284896e612f5774aa801bc881a9606ff8;hb=fb9237a1eb706f8d7e6ed0fea9e6f6a65fa5d7fe;hp=40f3d41eb8f32fa057cf46faf463fe2f045f5381;hpb=954ed2eaf305a60d7e046206472bc0397a421ad2;p=helm.git diff --git a/helm/software/matita/dama/metric_lattice.ma b/helm/software/matita/dama/metric_lattice.ma index 40f3d41eb..f0242da28 100644 --- a/helm/software/matita/dama/metric_lattice.ma +++ b/helm/software/matita/dama/metric_lattice.ma @@ -12,34 +12,18 @@ (* *) (**************************************************************************) - - include "metric_space.ma". include "lattice.ma". record mlattice_ (R : todgroup) : Type ≝ { ml_mspace_: metric_space R; - ml_lattice_: lattice; - ml_with_: ms_carr ? ml_mspace_ = l_carr ml_lattice_; - ml_with2_: l_carr ml_lattice_ = apart_of_metric_space ? ml_mspace_ + ml_lattice:> lattice; + ml_with: ms_carr ? ml_mspace_ = Type_OF_lattice ml_lattice }. -lemma ml_lattice: ∀R.mlattice_ R → lattice. -intros (R ml); apply (mk_lattice (apart_of_metric_space ? (ml_mspace_ ? ml))); try unfold eq; -cases (ml_with2_ ? ml); -[apply (join (ml_lattice_ ? ml));|apply (meet (ml_lattice_ ? ml)); -|apply (join_refl (ml_lattice_ R ml));| apply (meet_refl (ml_lattice_ ? ml)); -|apply (join_comm (ml_lattice_ ? ml));| apply (meet_comm (ml_lattice_ ? ml)); -|apply (join_assoc (ml_lattice_ ? ml));|apply (meet_assoc (ml_lattice_ ? ml)); -|apply (absorbjm (ml_lattice_ ? ml)); |apply (absorbmj (ml_lattice_ ? ml)); -|apply (strong_extj (ml_lattice_ ? ml));|apply (strong_extm (ml_lattice_ ? ml));] -qed. - -coercion cic:/matita/metric_lattice/ml_lattice.con. - lemma ml_mspace: ∀R.mlattice_ R → metric_space R. -intros (R ml); apply (mk_metric_space R ml); -cases (ml_with_ ? ml); simplify; +intros (R ml); apply (mk_metric_space R (Type_OF_mlattice_ ? ml)); +unfold Type_OF_mlattice_; cases (ml_with ? ml); simplify; [apply (metric ? (ml_mspace_ ? ml));|apply (mpositive ? (ml_mspace_ ? ml)); |apply (mreflexive ? (ml_mspace_ ? ml));|apply (msymmetric ? (ml_mspace_ ? ml)); |apply (mtineq ? (ml_mspace_ ? ml))] @@ -47,12 +31,19 @@ qed. coercion cic:/matita/metric_lattice/ml_mspace.con. +alias symbol "plus" = "Abelian group plus". +alias symbol "leq" = "Excess less or equal than". record mlattice (R : todgroup) : Type ≝ { ml_carr :> mlattice_ R; ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b; - ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c + ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ (δ b c) }. +interpretation "Metric lattice leq" 'leq a b = + (cic:/matita/excess/le.con (cic:/matita/metric_lattice/excess_OF_mlattice1.con _ _) a b). +interpretation "Metric lattice geq" 'geq a b = + (cic:/matita/excess/le.con (cic:/matita/metric_lattice/excess_OF_mlattice.con _ _) a b). + lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b. intros (R ml a b E); intro H; apply E; apply ml_prop1; assumption; @@ -79,7 +70,6 @@ lemma meq_r: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. intros; apply (eq_trans ???? (msymmetric ??y x)); apply (eq_trans ????? (msymmetric ??z y)); apply meq_l; assumption; qed. - lemma dap_to_lt: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → 0 < δ x y. intros; split [apply mpositive] apply ap_symmetric; assumption; @@ -97,17 +87,20 @@ intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] apply (le_transitive ????? (ml_prop2 ?? (y) ??)); cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] -lapply (le_to_eqm ??? Lxy) as Dxm; lapply (le_to_eqm ??? Lyz) as Dym; -lapply (le_to_eqj ??? Lxy) as Dxj; lapply (le_to_eqj ??? Lyz) as Dyj; clear Lxy Lyz; +lapply (le_to_eqm y x Lxy) as Dxm; lapply (le_to_eqm z y Lyz) as Dym; +lapply (le_to_eqj x y Lxy) as Dxj; lapply (le_to_eqj y z Lyz) as Dyj; clear Lxy Lyz; +STOP apply (Eq≈ (δ(x∧y) y + δy z) (meq_l ????? Dxm)); apply (Eq≈ (δ(x∧y) (y∧z) + δy z) (meq_r ????? Dym)); -apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) z) (meq_l ????? Dxj)); -apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) (y∨z))); [ - apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (x∨y) ? Dyj));] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) z));[ + apply feq_plusl; apply meq_l; clear Dyj Dxm Dym; assumption] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) (z∨y))); [ + apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (y∨x) ? Dyj));] apply (Eq≈ ? (plus_comm ???)); -apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)) (meq_l ????? (join_comm ?x y))); +apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)));[ + apply feq_plusr; apply meq_r; apply (join_comm ??);] apply feq_plusl; -apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm ?x y))); +apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm ??))); apply eq_reflexive; qed.