X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fordered_group.ma;h=44529cadf4d9a185e3810b1ffd7c53455b649e47;hb=7abdf2f1764ba67a48f0829f7a9813ce7426b0c6;hp=2129aa5c709ea0d33533e06e6ccee229365f2582;hpb=ff19936bfb1e58fea074f71526b4cb7f410d81de;p=helm.git diff --git a/helm/software/matita/dama/ordered_group.ma b/helm/software/matita/dama/ordered_group.ma index 2129aa5c7..44529cadf 100644 --- a/helm/software/matita/dama/ordered_group.ma +++ b/helm/software/matita/dama/ordered_group.ma @@ -12,21 +12,21 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/ordered_group/". + include "group.ma". record pogroup_ : Type ≝ { og_abelian_group_: abelian_group; og_excess:> excess; - og_with: carr og_abelian_group_ = apart_of_excess og_excess + og_with: carr og_abelian_group_ = exc_ap og_excess }. lemma og_abelian_group: pogroup_ → abelian_group. -intro G; apply (mk_abelian_group G); [1,2,3: rewrite < (og_with G)] -[apply (plus (og_abelian_group_ G));|apply zero;|apply opp] -unfold apartness_OF_pogroup_; cases (og_with G); simplify; -[apply plus_assoc|apply plus_comm|apply zero_neutral|apply opp_inverse|apply plus_strong_ext] +intro G; apply (mk_abelian_group G); unfold apartness_OF_pogroup_; +cases (og_with G); simplify; +[apply (plus (og_abelian_group_ G));|apply zero;|apply opp +|apply plus_assoc|apply plus_comm|apply zero_neutral|apply opp_inverse|apply plus_strong_ext] qed. coercion cic:/matita/ordered_group/og_abelian_group.con. @@ -55,19 +55,19 @@ coercion cic:/matita/ordered_group/fexc_plusr.con nocomposites. lemma plus_cancl_exc: ∀G:pogroup.∀f,g,h:G. h+f ≰ h+g → f ≰ g. intros 5 (G x y z L); apply (plus_cancr_exc ??? z); -apply (exc_rewl ??? (z+x) (plus_comm ???)); -apply (exc_rewr ??? (z+y) (plus_comm ???) L); +apply (Ex≪ (z+x) (plus_comm ???)); +apply (Ex≫ (z+y) (plus_comm ???) L); qed. lemma fexc_plusl: ∀G:pogroup.∀x,y,z:G. x ≰ y → z+x ≰ z+y. intros 5 (G x y z L); apply (plus_cancl_exc ??? (-z)); -apply (exc_rewl ???? (plus_assoc ??z x)); -apply (exc_rewr ???? (plus_assoc ??z y)); -apply (exc_rewl ??? (0+x) (opp_inverse ??)); -apply (exc_rewr ??? (0+y) (opp_inverse ??)); -apply (exc_rewl ???? (zero_neutral ??)); -apply (exc_rewr ???? (zero_neutral ??) L); +apply (Ex≪? (plus_assoc ??z x)); +apply (Ex≫? (plus_assoc ??z y)); +apply (Ex≪ (0+x) (opp_inverse ??)); +apply (Ex≫ (0+y) (opp_inverse ??)); +apply (Ex≪? (zero_neutral ??)); +apply (Ex≫? (zero_neutral ??) L); qed. coercion cic:/matita/ordered_group/fexc_plusl.con nocomposites. @@ -75,50 +75,50 @@ coercion cic:/matita/ordered_group/fexc_plusl.con nocomposites. lemma plus_cancr_le: ∀G:pogroup.∀x,y,z:G.x+z ≤ y + z → x ≤ y. intros 5 (G x y z L); -apply (le_rewl ??? (0+x) (zero_neutral ??)); -apply (le_rewl ??? (x+0) (plus_comm ???)); -apply (le_rewl ??? (x+(-z+z)) (opp_inverse ??)); -apply (le_rewl ??? (x+(z+ -z)) (plus_comm ??z)); -apply (le_rewl ??? (x+z+ -z) (plus_assoc ????)); -apply (le_rewr ??? (0+y) (zero_neutral ??)); -apply (le_rewr ??? (y+0) (plus_comm ???)); -apply (le_rewr ??? (y+(-z+z)) (opp_inverse ??)); -apply (le_rewr ??? (y+(z+ -z)) (plus_comm ??z)); -apply (le_rewr ??? (y+z+ -z) (plus_assoc ????)); +apply (Le≪ (0+x) (zero_neutral ??)); +apply (Le≪ (x+0) (plus_comm ???)); +apply (Le≪ (x+(-z+z)) (opp_inverse ??)); +apply (Le≪ (x+(z+ -z)) (plus_comm ??z)); +apply (Le≪ (x+z+ -z) (plus_assoc ????)); +apply (Le≫ (0+y) (zero_neutral ??)); +apply (Le≫ (y+0) (plus_comm ???)); +apply (Le≫ (y+(-z+z)) (opp_inverse ??)); +apply (Le≫ (y+(z+ -z)) (plus_comm ??z)); +apply (Le≫ (y+z+ -z) (plus_assoc ????)); intro H; apply L; clear L; apply (plus_cancr_exc ??? (-z) H); qed. lemma fle_plusl: ∀G:pogroup. ∀f,g,h:G. f≤g → h+f≤h+g. intros (G f g h); apply (plus_cancr_le ??? (-h)); -apply (le_rewl ??? (f+h+ -h) (plus_comm ? f h)); -apply (le_rewl ??? (f+(h+ -h)) (plus_assoc ????)); -apply (le_rewl ??? (f+(-h+h)) (plus_comm ? h (-h))); -apply (le_rewl ??? (f+0) (opp_inverse ??)); -apply (le_rewl ??? (0+f) (plus_comm ???)); -apply (le_rewl ??? (f) (zero_neutral ??)); -apply (le_rewr ??? (g+h+ -h) (plus_comm ? h ?)); -apply (le_rewr ??? (g+(h+ -h)) (plus_assoc ????)); -apply (le_rewr ??? (g+(-h+h)) (plus_comm ??h)); -apply (le_rewr ??? (g+0) (opp_inverse ??)); -apply (le_rewr ??? (0+g) (plus_comm ???)); -apply (le_rewr ??? (g) (zero_neutral ??) H); +apply (Le≪ (f+h+ -h) (plus_comm ? f h)); +apply (Le≪ (f+(h+ -h)) (plus_assoc ????)); +apply (Le≪ (f+(-h+h)) (plus_comm ? h (-h))); +apply (Le≪ (f+0) (opp_inverse ??)); +apply (Le≪ (0+f) (plus_comm ???)); +apply (Le≪ (f) (zero_neutral ??)); +apply (Le≫ (g+h+ -h) (plus_comm ? h ?)); +apply (Le≫ (g+(h+ -h)) (plus_assoc ????)); +apply (Le≫ (g+(-h+h)) (plus_comm ??h)); +apply (Le≫ (g+0) (opp_inverse ??)); +apply (Le≫ (0+g) (plus_comm ???)); +apply (Le≫ (g) (zero_neutral ??) H); qed. lemma fle_plusr: ∀G:pogroup. ∀f,g,h:G. f≤g → f+h≤g+h. -intros (G f g h H); apply (le_rewl ???? (plus_comm ???)); -apply (le_rewr ???? (plus_comm ???)); apply fle_plusl; assumption; +intros (G f g h H); apply (Le≪? (plus_comm ???)); +apply (Le≫? (plus_comm ???)); apply fle_plusl; assumption; qed. lemma plus_cancl_le: ∀G:pogroup.∀x,y,z:G.z+x ≤ z+y → x ≤ y. intros 5 (G x y z L); -apply (le_rewl ??? (0+x) (zero_neutral ??)); -apply (le_rewl ??? ((-z+z)+x) (opp_inverse ??)); -apply (le_rewl ??? (-z+(z+x)) (plus_assoc ????)); -apply (le_rewr ??? (0+y) (zero_neutral ??)); -apply (le_rewr ??? ((-z+z)+y) (opp_inverse ??)); -apply (le_rewr ??? (-z+(z+y)) (plus_assoc ????)); +apply (Le≪ (0+x) (zero_neutral ??)); +apply (Le≪ ((-z+z)+x) (opp_inverse ??)); +apply (Le≪ (-z+(z+x)) (plus_assoc ????)); +apply (Le≫ (0+y) (zero_neutral ??)); +apply (Le≫ ((-z+z)+y) (opp_inverse ??)); +apply (Le≫ (-z+(z+y)) (plus_assoc ????)); apply (fle_plusl ??? (-z) L); qed. @@ -138,55 +138,55 @@ qed. lemma exc_opp_x_zero_to_exc_zero_x: ∀G:pogroup.∀x:G.-x ≰ 0 → 0 ≰ x. intros (G x H); apply (plus_cancr_exc ??? (-x)); -apply (exc_rewr ???? (plus_comm ???)); -apply (exc_rewr ???? (opp_inverse ??)); -apply (exc_rewl ???? (zero_neutral ??) H); +apply (Ex≫? (plus_comm ???)); +apply (Ex≫? (opp_inverse ??)); +apply (Ex≪? (zero_neutral ??) H); qed. lemma le_zero_x_to_le_opp_x_zero: ∀G:pogroup.∀x:G.0 ≤ x → -x ≤ 0. intros (G x Px); apply (plus_cancr_le ??? x); -apply (le_rewl ??? 0 (opp_inverse ??)); -apply (le_rewr ??? x (zero_neutral ??) Px); +apply (Le≪ 0 (opp_inverse ??)); +apply (Le≫ x (zero_neutral ??) Px); qed. lemma lt_zero_x_to_lt_opp_x_zero: ∀G:pogroup.∀x:G.0 < x → -x < 0. intros (G x Px); apply (plus_cancr_lt ??? x); -apply (lt_rewl ??? 0 (opp_inverse ??)); -apply (lt_rewr ??? x (zero_neutral ??) Px); +apply (Lt≪ 0 (opp_inverse ??)); +apply (Lt≫ x (zero_neutral ??) Px); qed. lemma exc_zero_opp_x_to_exc_x_zero: ∀G:pogroup.∀x:G. 0 ≰ -x → x ≰ 0. intros (G x H); apply (plus_cancl_exc ??? (-x)); -apply (exc_rewr ???? (plus_comm ???)); -apply (exc_rewl ???? (opp_inverse ??)); -apply (exc_rewr ???? (zero_neutral ??) H); +apply (Ex≫? (plus_comm ???)); +apply (Ex≪? (opp_inverse ??)); +apply (Ex≫? (zero_neutral ??) H); qed. lemma le_x_zero_to_le_zero_opp_x: ∀G:pogroup.∀x:G. x ≤ 0 → 0 ≤ -x. intros (G x Lx0); apply (plus_cancr_le ??? x); -apply (le_rewr ??? 0 (opp_inverse ??)); -apply (le_rewl ??? x (zero_neutral ??)); +apply (Le≫ 0 (opp_inverse ??)); +apply (Le≪ x (zero_neutral ??)); assumption; qed. lemma lt_x_zero_to_lt_zero_opp_x: ∀G:pogroup.∀x:G. x < 0 → 0 < -x. intros (G x Lx0); apply (plus_cancr_lt ??? x); -apply (lt_rewr ??? 0 (opp_inverse ??)); -apply (lt_rewl ??? x (zero_neutral ??)); +apply (Lt≫ 0 (opp_inverse ??)); +apply (Lt≪ x (zero_neutral ??)); assumption; qed. lemma lt_opp_x_zero_to_lt_zero_x: ∀G:pogroup.∀x:G. -x < 0 → 0 < x. intros (G x Lx0); apply (plus_cancr_lt ??? (-x)); -apply (lt_rewl ??? (-x) (zero_neutral ??)); -apply (lt_rewr ??? (-x+x) (plus_comm ???)); -apply (lt_rewr ??? 0 (opp_inverse ??)); +apply (Lt≪ (-x) (zero_neutral ??)); +apply (Lt≫ (-x+x) (plus_comm ???)); +apply (Lt≫ 0 (opp_inverse ??)); assumption; qed. @@ -194,7 +194,7 @@ lemma lt0plus_orlt: ∀G:pogroup. ∀x,y:G. 0 ≤ x → 0 ≤ y → 0 < x + y → 0 < x ∨ 0 < y. intros (G x y LEx LEy LT); cases LT (H1 H2); cases (ap_cotransitive ??? y H2); [right; split; assumption|left;split;[assumption]] -apply (plus_cancr_ap ??? y); apply (ap_rewl ???? (zero_neutral ??)); +apply (plus_cancr_ap ??? y); apply (Ap≪? (zero_neutral ??)); assumption; qed. @@ -202,10 +202,10 @@ lemma le0plus_le: ∀G:pogroup.∀a,b,c:G. 0 ≤ b → a + b ≤ c → a ≤ c. intros (G a b c L H); apply (le_transitive ????? H); apply (plus_cancl_le ??? (-a)); -apply (le_rewl ??? 0 (opp_inverse ??)); -apply (le_rewr ??? (-a + a + b) (plus_assoc ????)); -apply (le_rewr ??? (0 + b) (opp_inverse ??)); -apply (le_rewr ??? b (zero_neutral ??)); +apply (Le≪ 0 (opp_inverse ??)); +apply (Le≫ (-a + a + b) (plus_assoc ????)); +apply (Le≫ (0 + b) (opp_inverse ??)); +apply (Le≫ b (zero_neutral ??)); assumption; qed. @@ -213,10 +213,10 @@ lemma le_le0plus: ∀G:pogroup.∀a,b:G. 0 ≤ a → 0 ≤ b → 0 ≤ a + b. intros (G a b L1 L2); apply (le_transitive ???? L1); apply (plus_cancl_le ??? (-a)); -apply (le_rewl ??? 0 (opp_inverse ??)); -apply (le_rewr ??? (-a + a + b) (plus_assoc ????)); -apply (le_rewr ??? (0 + b) (opp_inverse ??)); -apply (le_rewr ??? b (zero_neutral ??)); +apply (Le≪ 0 (opp_inverse ??)); +apply (Le≫ (-a + a + b) (plus_assoc ????)); +apply (Le≫ (0 + b) (opp_inverse ??)); +apply (Le≫ b (zero_neutral ??)); assumption; qed. @@ -235,8 +235,8 @@ qed. lemma ltxy_ltyyxx: ∀G:pogroup.∀x,y:G. y < x → y+y < x+x. intros; apply (lt_transitive ?? (y+x));[2: - apply (lt_rewl ???? (plus_comm ???)); - apply (lt_rewr ???? (plus_comm ???));] + apply (Lt≪? (plus_comm ???)); + apply (Lt≫? (plus_comm ???));] apply flt_plusl;assumption; qed. @@ -244,10 +244,10 @@ lemma lew_opp : ∀O:pogroup.∀a,b,c:O.0 ≤ b → a ≤ c → a + -b ≤ c. intros (O a b c L0 L); apply (le_transitive ????? L); apply (plus_cancl_le ??? (-a)); -apply (le_rewr ??? 0 (opp_inverse ??)); -apply (le_rewl ??? (-a+a+-b) (plus_assoc ????)); -apply (le_rewl ??? (0+-b) (opp_inverse ??)); -apply (le_rewl ??? (-b) (zero_neutral ?(-b))); +apply (Le≫ 0 (opp_inverse ??)); +apply (Le≪ (-a+a+-b) (plus_assoc ????)); +apply (Le≪ (0+-b) (opp_inverse ??)); +apply (Le≪ (-b) (zero_neutral ?(-b))); apply le_zero_x_to_le_opp_x_zero; assumption; qed. @@ -256,10 +256,10 @@ lemma ltw_opp : ∀O:pogroup.∀a,b,c:O.0 < b → a < c → a + -b < c. intros (O a b c P L); apply (lt_transitive ????? L); apply (plus_cancl_lt ??? (-a)); -apply (lt_rewr ??? 0 (opp_inverse ??)); -apply (lt_rewl ??? (-a+a+-b) (plus_assoc ????)); -apply (lt_rewl ??? (0+-b) (opp_inverse ??)); -apply (lt_rewl ??? ? (zero_neutral ??)); +apply (Lt≫ 0 (opp_inverse ??)); +apply (Lt≪ (-a+a+-b) (plus_assoc ????)); +apply (Lt≪ (0+-b) (opp_inverse ??)); +apply (Lt≪ ? (zero_neutral ??)); apply lt_zero_x_to_lt_opp_x_zero; assumption; qed. @@ -282,7 +282,7 @@ qed. lemma applus_orap: ∀G:abelian_group. ∀x,y:G. 0 # x + y → 0 #x ∨ 0#y. intros; cases (ap_cotransitive ??? y a); [right; assumption] -left; apply (plus_cancr_ap ??? y); apply (ap_rewl ???y (zero_neutral ??)); +left; apply (plus_cancr_ap ??? y); apply (Ap≪y (zero_neutral ??)); assumption; qed. @@ -310,7 +310,7 @@ intros; intro; apply H; lapply (lt_to_excess ??? l); lapply (tog_total ??? e); lapply (tog_total ??? Hletin); lapply (ltplus ????? Hletin2 Hletin1); -apply (exc_rewl ??? (0+0)); [apply eq_sym; apply zero_neutral] +apply (Ex≪ (0+0)); [apply eq_sym; apply zero_neutral] apply lt_to_excess; assumption; qed.