X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fsequence.ma;h=9990f8c7d6728caf9f54980beec358af4d49e357;hb=892992b24f5476c2b4eed13f64e04854ef919020;hp=9edc871e5ce25ba2f2373d07b01aa6c82f74d043;hpb=a2fe87da00fb5b9a39e9a1c7d796c61d4c7346af;p=helm.git diff --git a/helm/software/matita/dama/sequence.ma b/helm/software/matita/dama/sequence.ma index 9edc871e5..9990f8c7d 100644 --- a/helm/software/matita/dama/sequence.ma +++ b/helm/software/matita/dama/sequence.ma @@ -14,214 +14,221 @@ set "baseuri" "cic:/matita/sequence/". -include "ordered_set.ma". +include "excess.ma". -definition sequence := λO:pordered_set.nat → O. +definition sequence := λO:excess.nat → O. -definition fun_of_sequence: ∀O:pordered_set.sequence O → nat → O. +definition fun_of_sequence: ∀O:excess.sequence O → nat → O. intros; apply s; assumption; qed. coercion cic:/matita/sequence/fun_of_sequence.con 1. definition upper_bound ≝ - λO:pordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤ u. + λO:excess.λa:sequence O.λu:O.∀n:nat.a n ≤ u. definition lower_bound ≝ - λO:pordered_set.λa:sequence O.λu:O.∀n:nat.u ≤ a n. + λO:excess.λa:sequence O.λu:O.∀n:nat.u ≤ a n. definition strong_sup ≝ - λO:pordered_set.λs:sequence O.λx. + λO:excess.λs:sequence O.λx. upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y). definition strong_inf ≝ - λO:pordered_set.λs:sequence O.λx. + λO:excess.λs:sequence O.λx. lower_bound ? s x ∧ (∀y:O.y ≰ x → ∃n.y ≰ s n). definition weak_sup ≝ - λO:pordered_set.λs:sequence O.λx. + λO:excess.λs:sequence O.λx. upper_bound ? s x ∧ (∀y:O.upper_bound ? s y → x ≤ y). definition weak_inf ≝ - λO:pordered_set.λs:sequence O.λx. + λO:excess.λs:sequence O.λx. lower_bound ? s x ∧ (∀y:O.lower_bound ? s y → y ≤ x). lemma strong_sup_is_weak: - ∀O:pordered_set.∀s:sequence O.∀x:O.strong_sup ? s x → weak_sup ? s x. + ∀O:excess.∀s:sequence O.∀x:O.strong_sup ? s x → weak_sup ? s x. intros (O s x Ssup); elim Ssup (Ubx M); clear Ssup; split; [assumption] intros 3 (y Uby E); cases (M ? E) (n En); unfold in Uby; cases (Uby ? En); qed. lemma strong_inf_is_weak: - ∀O:pordered_set.∀s:sequence O.∀x:O.strong_inf ? s x → weak_inf ? s x. + ∀O:excess.∀s:sequence O.∀x:O.strong_inf ? s x → weak_inf ? s x. intros (O s x Ssup); elim Ssup (Ubx M); clear Ssup; split; [assumption] intros 3 (y Uby E); cases (M ? E) (n En); unfold in Uby; cases (Uby ? En); qed. +include "ordered_group.ma". +include "nat/orders.ma". - +definition tends0 ≝ + λO:pogroup.λs:sequence O. + ∀e:O.0 < e → ∃N.∀n.N < n → -e < s n ∧ s n < e. + definition increasing ≝ - λO:pordered_set.λa:sequence O.∀n:nat.a n ≤ a (S n). + λO:excess.λa:sequence O.∀n:nat.a n ≤ a (S n). definition decreasing ≝ - λO:pordered_set.λa:sequence O.∀n:nat.a (S n) ≤ a n. + λO:excess.λa:sequence O.∀n:nat.a (S n) ≤ a n. + + (* -definition is_upper_bound ≝ λO:pordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤ u. -definition is_lower_bound ≝ λO:pordered_set.λa:sequence O.λu:O.∀n:nat.u ≤ a n. +definition is_upper_bound ≝ λO:excess.λa:sequence O.λu:O.∀n:nat.a n ≤ u. +definition is_lower_bound ≝ λO:excess.λa:sequence O.λu:O.∀n:nat.u ≤ a n. -record is_sup (O:pordered_set) (a:sequence O) (u:O) : Prop ≝ +record is_sup (O:excess) (a:sequence O) (u:O) : Prop ≝ { sup_upper_bound: is_upper_bound O a u; sup_least_upper_bound: ∀v:O. is_upper_bound O a v → u≤v }. -record is_inf (O:pordered_set) (a:sequence O) (u:O) : Prop ≝ +record is_inf (O:excess) (a:sequence O) (u:O) : Prop ≝ { inf_lower_bound: is_lower_bound O a u; inf_greatest_lower_bound: ∀v:O. is_lower_bound O a v → v≤u }. -record is_bounded_below (O:pordered_set) (a:sequence O) : Type ≝ +record is_bounded_below (O:excess) (a:sequence O) : Type ≝ { ib_lower_bound: O; ib_lower_bound_is_lower_bound: is_lower_bound ? a ib_lower_bound }. -record is_bounded_above (O:pordered_set) (a:sequence O) : Type ≝ +record is_bounded_above (O:excess) (a:sequence O) : Type ≝ { ib_upper_bound: O; ib_upper_bound_is_upper_bound: is_upper_bound ? a ib_upper_bound }. -record is_bounded (O:pordered_set) (a:sequence O) : Type ≝ +record is_bounded (O:excess) (a:sequence O) : Type ≝ { ib_bounded_below:> is_bounded_below ? a; ib_bounded_above:> is_bounded_above ? a }. -record bounded_below_sequence (O:pordered_set) : Type ≝ +record bounded_below_sequence (O:excess) : Type ≝ { bbs_seq:> sequence O; bbs_is_bounded_below:> is_bounded_below ? bbs_seq }. -record bounded_above_sequence (O:pordered_set) : Type ≝ +record bounded_above_sequence (O:excess) : Type ≝ { bas_seq:> sequence O; bas_is_bounded_above:> is_bounded_above ? bas_seq }. -record bounded_sequence (O:pordered_set) : Type ≝ +record bounded_sequence (O:excess) : Type ≝ { bs_seq:> sequence O; bs_is_bounded_below: is_bounded_below ? bs_seq; bs_is_bounded_above: is_bounded_above ? bs_seq }. definition bounded_below_sequence_of_bounded_sequence ≝ - λO:pordered_set.λb:bounded_sequence O. + λO:excess.λb:bounded_sequence O. mk_bounded_below_sequence ? b (bs_is_bounded_below ? b). coercion cic:/matita/sequence/bounded_below_sequence_of_bounded_sequence.con. definition bounded_above_sequence_of_bounded_sequence ≝ - λO:pordered_set.λb:bounded_sequence O. + λO:excess.λb:bounded_sequence O. mk_bounded_above_sequence ? b (bs_is_bounded_above ? b). coercion cic:/matita/sequence/bounded_above_sequence_of_bounded_sequence.con. definition lower_bound ≝ - λO:pordered_set.λb:bounded_below_sequence O. + λO:excess.λb:bounded_below_sequence O. ib_lower_bound ? b (bbs_is_bounded_below ? b). lemma lower_bound_is_lower_bound: - ∀O:pordered_set.∀b:bounded_below_sequence O. + ∀O:excess.∀b:bounded_below_sequence O. is_lower_bound ? b (lower_bound ? b). intros; unfold lower_bound; apply ib_lower_bound_is_lower_bound. qed. definition upper_bound ≝ - λO:pordered_set.λb:bounded_above_sequence O. + λO:excess.λb:bounded_above_sequence O. ib_upper_bound ? b (bas_is_bounded_above ? b). lemma upper_bound_is_upper_bound: - ∀O:pordered_set.∀b:bounded_above_sequence O. + ∀O:excess.∀b:bounded_above_sequence O. is_upper_bound ? b (upper_bound ? b). intros; unfold upper_bound; apply ib_upper_bound_is_upper_bound. qed. -definition reverse_excedence: excedence → excedence. -intros (E); apply (mk_excedence E); [apply (λx,y.exc_relation E y x)] +definition reverse_excess: excess → excess. +intros (E); apply (mk_excess E); [apply (λx,y.exc_relation E y x)] cases E (T f cRf cTf); simplify; [1: unfold Not; intros (x H); apply (cRf x); assumption |2: intros (x y z); apply Or_symmetric; apply cTf; assumption;] qed. -definition reverse_pordered_set: pordered_set → pordered_set. -intros (p); apply (mk_pordered_set (reverse_excedence p)); -generalize in match (reverse_excedence p); intros (E); +definition reverse_excess: excess → excess. +intros (p); apply (mk_excess (reverse_excess p)); +generalize in match (reverse_excess p); intros (E); apply mk_is_porder_relation; [apply le_reflexive|apply le_transitive|apply le_antisymmetric] qed. lemma is_lower_bound_reverse_is_upper_bound: - ∀O:pordered_set.∀a:sequence O.∀l:O. - is_lower_bound O a l → is_upper_bound (reverse_pordered_set O) a l. -intros (O a l H); unfold; intros (n); unfold reverse_pordered_set; -unfold reverse_excedence; simplify; fold unfold le (le ? l (a n)); apply H; + ∀O:excess.∀a:sequence O.∀l:O. + is_lower_bound O a l → is_upper_bound (reverse_excess O) a l. +intros (O a l H); unfold; intros (n); unfold reverse_excess; +unfold reverse_excess; simplify; fold unfold le (le ? l (a n)); apply H; qed. lemma is_upper_bound_reverse_is_lower_bound: - ∀O:pordered_set.∀a:sequence O.∀l:O. - is_upper_bound O a l → is_lower_bound (reverse_pordered_set O) a l. -intros (O a l H); unfold; intros (n); unfold reverse_pordered_set; -unfold reverse_excedence; simplify; fold unfold le (le ? (a n) l); apply H; + ∀O:excess.∀a:sequence O.∀l:O. + is_upper_bound O a l → is_lower_bound (reverse_excess O) a l. +intros (O a l H); unfold; intros (n); unfold reverse_excess; +unfold reverse_excess; simplify; fold unfold le (le ? (a n) l); apply H; qed. lemma reverse_is_lower_bound_is_upper_bound: - ∀O:pordered_set.∀a:sequence O.∀l:O. - is_lower_bound (reverse_pordered_set O) a l → is_upper_bound O a l. -intros (O a l H); unfold; intros (n); unfold reverse_pordered_set in H; -unfold reverse_excedence in H; simplify in H; apply H; + ∀O:excess.∀a:sequence O.∀l:O. + is_lower_bound (reverse_excess O) a l → is_upper_bound O a l. +intros (O a l H); unfold; intros (n); unfold reverse_excess in H; +unfold reverse_excess in H; simplify in H; apply H; qed. lemma reverse_is_upper_bound_is_lower_bound: - ∀O:pordered_set.∀a:sequence O.∀l:O. - is_upper_bound (reverse_pordered_set O) a l → is_lower_bound O a l. -intros (O a l H); unfold; intros (n); unfold reverse_pordered_set in H; -unfold reverse_excedence in H; simplify in H; apply H; + ∀O:excess.∀a:sequence O.∀l:O. + is_upper_bound (reverse_excess O) a l → is_lower_bound O a l. +intros (O a l H); unfold; intros (n); unfold reverse_excess in H; +unfold reverse_excess in H; simplify in H; apply H; qed. lemma is_inf_to_reverse_is_sup: - ∀O:pordered_set.∀a:bounded_below_sequence O.∀l:O. - is_inf O a l → is_sup (reverse_pordered_set O) a l. -intros (O a l H); apply (mk_is_sup (reverse_pordered_set O)); + ∀O:excess.∀a:bounded_below_sequence O.∀l:O. + is_inf O a l → is_sup (reverse_excess O) a l. +intros (O a l H); apply (mk_is_sup (reverse_excess O)); [1: apply is_lower_bound_reverse_is_upper_bound; apply inf_lower_bound; assumption -|2: unfold reverse_pordered_set; simplify; unfold reverse_excedence; simplify; +|2: unfold reverse_excess; simplify; unfold reverse_excess; simplify; intros (m H1); apply (inf_greatest_lower_bound ? ? ? H); apply H1;] qed. lemma is_sup_to_reverse_is_inf: - ∀O:pordered_set.∀a:bounded_above_sequence O.∀l:O. - is_sup O a l → is_inf (reverse_pordered_set O) a l. -intros (O a l H); apply (mk_is_inf (reverse_pordered_set O)); + ∀O:excess.∀a:bounded_above_sequence O.∀l:O. + is_sup O a l → is_inf (reverse_excess O) a l. +intros (O a l H); apply (mk_is_inf (reverse_excess O)); [1: apply is_upper_bound_reverse_is_lower_bound; apply sup_upper_bound; assumption -|2: unfold reverse_pordered_set; simplify; unfold reverse_excedence; simplify; +|2: unfold reverse_excess; simplify; unfold reverse_excess; simplify; intros (m H1); apply (sup_least_upper_bound ? ? ? H); apply H1;] qed. lemma reverse_is_sup_to_is_inf: - ∀O:pordered_set.∀a:bounded_above_sequence O.∀l:O. - is_sup (reverse_pordered_set O) a l → is_inf O a l. + ∀O:excess.∀a:bounded_above_sequence O.∀l:O. + is_sup (reverse_excess O) a l → is_inf O a l. intros (O a l H); apply mk_is_inf; [1: apply reverse_is_upper_bound_is_lower_bound; - apply (sup_upper_bound (reverse_pordered_set O)); assumption -|2: intros (v H1); apply (sup_least_upper_bound (reverse_pordered_set O) a l H v); + apply (sup_upper_bound (reverse_excess O)); assumption +|2: intros (v H1); apply (sup_least_upper_bound (reverse_excess O) a l H v); apply is_lower_bound_reverse_is_upper_bound; assumption;] qed. lemma reverse_is_inf_to_is_sup: - ∀O:pordered_set.∀a:bounded_above_sequence O.∀l:O. - is_inf (reverse_pordered_set O) a l → is_sup O a l. + ∀O:excess.∀a:bounded_above_sequence O.∀l:O. + is_inf (reverse_excess O) a l → is_sup O a l. intros (O a l H); apply mk_is_sup; [1: apply reverse_is_lower_bound_is_upper_bound; - apply (inf_lower_bound (reverse_pordered_set O)); assumption -|2: intros (v H1); apply (inf_greatest_lower_bound (reverse_pordered_set O) a l H v); + apply (inf_lower_bound (reverse_excess O)); assumption +|2: intros (v H1); apply (inf_greatest_lower_bound (reverse_excess O) a l H v); apply is_upper_bound_reverse_is_lower_bound; assumption;] qed.