X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fdama%2Fvalued_lattice.ma;fp=helm%2Fsoftware%2Fmatita%2Fdama%2Fvalued_lattice.ma;h=0000000000000000000000000000000000000000;hb=988788642009674995382eed87606faca201ac1c;hp=610bf7d359b65650cb84a838a4f3149bbcb973ca;hpb=dbf2689a206bb4f7a3b36f6e40a88a47c8ad6e09;p=helm.git diff --git a/helm/software/matita/dama/valued_lattice.ma b/helm/software/matita/dama/valued_lattice.ma deleted file mode 100644 index 610bf7d35..000000000 --- a/helm/software/matita/dama/valued_lattice.ma +++ /dev/null @@ -1,243 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -set "baseuri" "cic:/matita/valued_lattice/". - -include "ordered_groups.ma". - -record vlattice (R : ogroup) : Type ≝ { - vl_carr:> Type; - value: vl_carr → R; - join: vl_carr → vl_carr → vl_carr; - meet: vl_carr → vl_carr → vl_carr; - meet_refl: ∀x. value (meet x x) ≈ value x; - join_refl: ∀x. value (join x x) ≈ value x; - meet_comm: ∀x,y. value (meet x y) ≈ value (meet y x); - join_comm: ∀x,y. value (join x y) ≈ value (join y x); - join_assoc: ∀x,y,z. value (join x (join y z)) ≈ value (join (join x y) z); - meet_assoc: ∀x,y,z. value (meet x (meet y z)) ≈ value (meet (meet x y) z); - meet_wins1: ∀x,y. value (join x (meet x y)) ≈ value x; - meet_wins2: ∀x,y. value (meet x (join x y)) ≈ value x; - modular_mjp: ∀x,y. value (join x y) + value (meet x y) ≈ value x + value y; - join_meet_le: ∀x,y,z. value (join x (meet y z)) ≤ value (join x y); - meet_join_le: ∀x,y,z. value (meet x y) ≤ value (meet x (join y z)) -}. - -interpretation "valued lattice meet" 'and a b = - (cic:/matita/valued_lattice/meet.con _ _ a b). - -interpretation "valued lattice join" 'or a b = - (cic:/matita/valued_lattice/join.con _ _ a b). - -notation < "\nbsp \mu a" non associative with precedence 80 for @{ 'value2 $a}. -interpretation "lattice value" 'value2 a = (cic:/matita/valued_lattice/value.con _ _ a). - -notation "\mu" non associative with precedence 80 for @{ 'value }. -interpretation "lattice value" 'value = (cic:/matita/valued_lattice/value.con _ _). - -lemma feq_joinr: ∀R.∀L:vlattice R.∀x,y,z:L. - μ x ≈ μ y → μ (z ∧ x) ≈ μ (z ∧ y) → μ (z ∨ x) ≈ μ (z ∨ y). -intros (R L x y z H H1); -apply (plus_cancr ??? (μ(z∧x))); -apply (eq_trans ?? (μz + μx) ? (modular_mjp ????)); -apply (eq_trans ?? (μz + μy) ? H); clear H; -apply (eq_trans ?? (μ(z∨y) + μ(z∧y)) ? (modular_mjp ??z y)); -apply (plus_cancl ??? (- μ (z ∨ y))); -apply (eq_trans ?? ? ? (plus_assoc ????)); -apply (eq_trans ?? (0+ μ(z∧y)) ? (opp_inverse ??)); -apply (eq_trans ?? ? ? (zero_neutral ??)); -apply (eq_trans ?? (- μ(z∨y)+ μ(z∨y)+ μ(z∧x)) ?? (plus_assoc ????)); -apply (eq_trans ?? (0+ μ(z∧x)) ?? (opp_inverse ??)); -apply (eq_trans ?? (μ (z ∧ x)) ?H1 (zero_neutral ??)); -qed. - -lemma modularj: ∀R.∀L:vlattice R.∀y,z:L. μ(y∨z) ≈ μy + μz + -μ (y ∧ z). -intros (R L y z); -lapply (modular_mjp ?? y z) as H1; -apply (plus_cancr ??? (μ(y ∧ z))); -apply (eq_trans ?? ? ? H1); clear H1; -apply (eq_trans ?? ? ?? (plus_assoc ????)); -apply (eq_trans ?? (μy+ μz + 0) ?? (opp_inverse ??)); -apply (eq_trans ?? ? ?? (plus_comm ???)); -apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??))); -apply eq_reflexive. -qed. - -lemma modularm: ∀R.∀L:vlattice R.∀y,z:L. μ(y∧z) ≈ μy + μz + -μ (y ∨ z). -(* CSC: questa è la causa per cui la hint per cercare i duplicati ci sta 1 mese *) -(* exact modularj; *) -intros (R L y z); -lapply (modular_mjp ?? y z) as H1; -apply (plus_cancl ??? (μ(y ∨ z))); -apply (eq_trans ?? ? ? H1); clear H1; -apply (eq_trans ????? (plus_comm ???)); -apply (eq_trans ?? ? ?? (plus_assoc ????)); -apply (eq_trans ?? (μy+ μz + 0) ?? (opp_inverse ??)); -apply (eq_trans ?? ? ?? (plus_comm ???)); -apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??))); -apply eq_reflexive. -qed. - -lemma modularmj: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z))). -intros (R L x y z); -lapply (modular_mjp ?? x (y ∨ z)) as H1; -apply (eq_trans ?? (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ?? (feq_plusr ???? H1)); clear H1; -apply (eq_trans ?? ? ?? (plus_comm ???)); -apply (eq_trans ?? (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z))) ?? (plus_assoc ????)); -apply (eq_trans ?? (0+μ(x∧(y∨z))) ?? (opp_inverse ??)); -apply (eq_trans ?? (μ(x∧(y∨z))) ?? (zero_neutral ??)); -apply eq_reflexive. -qed. - -lemma modularjm: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∨(y∧z))≈(μx + μ(y ∧ z) + - μ(x∧(y∧z))). -intros (R L x y z); -lapply (modular_mjp ?? x (y ∧ z)) as H1; -apply (eq_trans ?? (μ(x∧(y∧z))+ μ(x∨(y∧z)) +-μ(x∧(y∧z)))); [2: apply feq_plusr; apply (eq_trans ???? (plus_comm ???)); apply H1] clear H1; -apply (eq_trans ?? ? ?? (plus_comm ???)); -apply (eq_trans ?? (- μ(x∧(y∧z))+ μ(x∧(y∧z))+ μ(x∨y∧z)) ?? (plus_assoc ????)); -apply (eq_trans ?? (0+ μ(x∨y∧z)) ?? (opp_inverse ??)); -apply eq_sym; apply zero_neutral; -qed. - -lemma step1_3_57': ∀R.∀L:vlattice R.∀x,y,z:L. - μ(x ∨ (y ∧ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∨ z) + -μ (z ∧ (x ∧ y)). -intros (R L x y z); -apply (eq_trans ?? ? ? (modularjm ?? x y z)); -apply (eq_trans ?? ( μx+ (μy+ μz+- μ(y∨z)) +- μ(x∧(y∧z))) ?); [ - apply feq_plusr; apply feq_plusl; apply (modularm ?? y z);] -apply (eq_trans ?? (μx+ μy+ μz+- μ(y∨z)+- μ(x∧(y∧z)))); [2: - apply feq_plusl; apply feq_opp; - apply (eq_trans ?? ? ? (meet_assoc ?????)); - apply (eq_trans ?? ? ? (meet_comm ????)); - apply eq_reflexive;] -apply feq_plusr; apply (eq_trans ?? ? ? (plus_assoc ????)); -apply feq_plusr; apply plus_assoc; -qed. - -lemma step1_3_57: ∀R.∀L:vlattice R.∀x,y,z:L. - μ(x ∧ (y ∨ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∧ z) + -μ (z ∨ (x ∨ y)). -intros (R L x y z); -apply (eq_trans ?? ? ? (modularmj ?? x y z)); -apply (eq_trans ?? ( μx+ (μy+ μz+- μ(y∧z)) +- μ(x∨(y∨z))) ?); [ - apply feq_plusr; apply feq_plusl; apply (modularj ?? y z);] -apply (eq_trans ?? (μx+ μy+ μz+- μ(y∧z)+- μ(x∨(y∨z)))); [2: - apply feq_plusl; apply feq_opp; - apply (eq_trans ?? ? ? (join_assoc ?????)); - apply (eq_trans ?? ? ? (join_comm ????)); - apply eq_reflexive;] -apply feq_plusr; apply (eq_trans ?? ? ? (plus_assoc ????)); -apply feq_plusr; apply plus_assoc; -qed. - -(* LEMMA 3.57 *) - -lemma join_meet_le_join: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∨ (y ∧ z)) ≤ μ (x ∨ z). -intros (R L x y z); -apply (le_rewl ??? ? (eq_sym ??? (step1_3_57' ?????))); -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ -μ(z∧x∧y))); [ - apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (meet_assoc ?????))); apply eq_reflexive;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- ( μ(z∧x)+ μy+- μ((z∧x)∨y))))); [ - apply feq_plusl; apply feq_opp; apply eq_sym; apply modularm] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- μ(z∧x)+ -μy+-- μ((z∧x)∨y)))); [ - apply feq_plusl; apply (eq_trans ?? (- (μ(z∧x)+ μy) + -- μ((z∧x)∨y))); [ - apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] - apply eq_sym; apply eq_opp_plus_plus_opp_opp;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy+ μ(y∨(z∧x))))); [ - repeat apply feq_plusl; apply eq_sym; apply (eq_trans ?? (μ((z∧x)∨y)) ? (eq_opp_opp_x_x ??)); - apply join_comm;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy)+ μ(y∨(z∧x)))); [ - apply eq_sym; apply plus_assoc;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μy + - μ(z∧x))+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+- μy + - μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] -apply (le_rewl ??? (μx+ μy+ μz+- μy + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ( μx+ μy+ μz+(- μy+- μ(y∨z))) ? (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewl ??? (μx+ μy+ -μy+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? (μx+ μy+( -μy+ μz)) ? (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewl ??? (μx+ 0 + μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); - apply opp_inverse; apply eq_reflexive;] -apply (le_rewl ??? (μx+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); - apply eq_sym; apply zero_neutral;] -apply (le_rewl ??? (μz+ μx + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply plus_comm;] -apply (le_rewl ??? (μz+ μx +- μ(z∧x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; - apply plus_comm;] -apply (le_rewl ??? (μ(z∨x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply modularj;] -apply (le_rewl ??? (μ(z∨x)+ (- μ(y∨z)+ μ(y∨(z∧x)))) (plus_assoc ????)); -apply (le_rewr ??? (μ(x∨z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] -apply (le_rewr ??? (μ(x∨z) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusl; apply opp_inverse] -apply (le_rewr ??? (μ(z∨x) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusr; apply join_comm;] -repeat apply fle_plusl; apply join_meet_le; -qed. - -lemma meet_le_meet_join: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∧ z) ≤ μ (x ∧ (y ∨ z)). -intros (R L x y z); -apply (le_rewr ??? ? (eq_sym ??? (step1_3_57 ?????))); -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ -μ(z∨x∨y))); [ - apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (join_assoc ?????))); apply eq_reflexive;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- ( μ(z∨x)+ μy+- μ((z∨x)∧y))))); [ - apply feq_plusl; apply feq_opp; apply eq_sym; apply modularj] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- μ(z∨x)+ -μy+-- μ((z∨x)∧y)))); [ - apply feq_plusl; apply (eq_trans ?? (- (μ(z∨x)+ μy) + -- μ((z∨x)∧y))); [ - apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] - apply eq_sym; apply eq_opp_plus_plus_opp_opp;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy+ μ(y∧(z∨x))))); [ - repeat apply feq_plusl; apply eq_sym; apply (eq_trans ?? (μ((z∨x)∧y)) ? (eq_opp_opp_x_x ??)); - apply meet_comm;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy)+ μ(y∧(z∨x)))); [ - apply eq_sym; apply plus_assoc;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μy + - μ(z∨x))+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+- μy + - μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] -apply (le_rewr ??? (μx+ μy+ μz+- μy + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ( μx+ μy+ μz+(- μy+- μ(y∧z))) ? (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewr ??? (μx+ μy+ -μy+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? (μx+ μy+( -μy+ μz)) ? (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewr ??? (μx+ 0 + μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); - apply opp_inverse; apply eq_reflexive;] -apply (le_rewr ??? (μx+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); - apply eq_sym; apply zero_neutral;] -apply (le_rewr ??? (μz+ μx + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply plus_comm;] -apply (le_rewr ??? (μz+ μx +- μ(z∨x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; - apply plus_comm;] -apply (le_rewr ??? (μ(z∧x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply modularm;] -apply (le_rewr ??? (μ(z∧x)+ (- μ(y∧z)+ μ(y∧(z∨x)))) (plus_assoc ????)); -apply (le_rewl ??? (μ(x∧z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] -apply (le_rewl ??? (μ(x∧z) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusl; apply opp_inverse] -apply (le_rewl ??? (μ(z∧x) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusr; apply meet_comm;] -repeat apply fle_plusl; apply meet_join_le; -qed.