X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2FFsub%2Fpart1a.ma;h=8558725cc883569783da832862df8b0d1ed8e969;hb=725f187fc8da130059794317091e03f509727fd8;hp=7fb8fed9c14c5433fc8cbd503a8f71e02aedb655;hpb=5f6974da8825bf7a7b23a5a9c7b051656d03aa37;p=helm.git diff --git a/helm/software/matita/library/Fsub/part1a.ma b/helm/software/matita/library/Fsub/part1a.ma index 7fb8fed9c..8558725cc 100644 --- a/helm/software/matita/library/Fsub/part1a.ma +++ b/helm/software/matita/library/Fsub/part1a.ma @@ -16,237 +16,119 @@ set "baseuri" "cic:/matita/Fsub/part1a/". include "Fsub/defn.ma". (*** Lemma A.1 (Reflexivity) ***) - theorem JS_Refl : ∀T,G.WFType G T → WFEnv G → G ⊢ T ⊴ T. -intros 3;elim H - [apply (SA_Refl_TVar l n H2 H1); - |apply (SA_Top l Top H1 (WFT_Top l)); - |apply (SA_Arrow l t t1 t t1 (H2 H5) (H4 H5)) - |apply (SA_All ? ? ? ? ? (H2 H5));intros;apply (H4 X H6) - [intro;apply H6;apply (fv_WFT (Forall t t1) X l) - [apply (WFT_Forall ? ? ? H1 H3) - |simplify;autobatch] +intros 3.elim H + [apply SA_Refl_TVar [apply H2|assumption] + |apply SA_Top [assumption|apply WFT_Top] + |apply (SA_Arrow ? ? ? ? ? (H2 H5) (H4 H5)) + |apply (SA_All ? ? ? ? ? (H2 H5));intros;apply (H4 ? H6) + [intro;apply H6;apply (fv_WFT ? ? ? (WFT_Forall ? ? ? H1 H3)); + simplify;autobatch |autobatch]] qed. -(* +(* * A slightly more general variant to lemma A.2.2, where weakening isn't * defined as concatenation of any two disjoint environments, but as * set inclusion. *) - -lemma JS_weakening : \forall G,T,U.(JSubtype G T U) \to - \forall H.(WFEnv H) \to (incl ? G H) \to (JSubtype H T U). + +lemma JS_weakening : ∀G,T,U.G ⊢ T ⊴ U → ∀H.WFEnv H → incl ? G H → H ⊢ T ⊴ U. intros 4;elim H - [apply (SA_Top ? ? H4);lapply (incl_bound_fv ? ? H5); - apply (WFT_env_incl ? ? H2 ? Hletin) - |apply (SA_Refl_TVar ? ? H4);lapply (incl_bound_fv ? ? H5); - apply (Hletin ? H2) - |lapply (H3 ? H5 H6);lapply (H6 ? H1); - apply (SA_Trans_TVar ? ? ? ? Hletin1 Hletin) - |lapply (H2 ? H6 H7);lapply (H4 ? H6 H7); - apply (SA_Arrow ? ? ? ? ? Hletin Hletin1) - |lapply (H2 ? H6 H7);apply (SA_All ? ? ? ? ? Hletin);intros;apply H4 - [unfold;intro;apply H8;lapply (incl_bound_fv ? ? H7);apply (Hletin1 ? H9) - |apply WFE_cons - [1,2:assumption - |apply (JS_to_WFT1 ? ? ? Hletin)] - |unfold;intros;elim (in_cons_case ? ? ? ? H9) - [rewrite > H10;apply in_Base - |elim H10;apply (in_Skip ? ? ? ? ? H11);apply (H7 ? H12)]]] + [apply (SA_Top ? ? H4);apply (WFT_env_incl ? ? H2 ? (incl_bound_fv ? ? H5)) + |apply (SA_Refl_TVar ? ? H4);apply (incl_bound_fv ? ? H5 ? H2) + |apply (SA_Trans_TVar ? ? ? ? ? (H3 ? H5 H6));apply H6;assumption + |apply (SA_Arrow ? ? ? ? ? (H2 ? H6 H7) (H4 ? H6 H7)) + |apply (SA_All ? ? ? ? ? (H2 ? H6 H7));intros;apply H4 + [unfold;intro;apply H8;apply (incl_bound_fv ? ? H7 ? H9) + |apply (WFE_cons ? ? ? ? H6 H8);autobatch + |unfold;intros;inversion H9;intros + [destruct H11;apply in_Base + |destruct H13;apply in_Skip;apply (H7 ? H10)]]] qed. -lemma decidable_eq_Typ : \forall S,T:Typ.(S = T) ∨ (S ≠ T). -intro;elim S - [elim T - [elim (decidable_eq_nat n n1) - [rewrite > H;left;reflexivity - |right;intro;destruct H1;apply (H Hcut)] - |2,3:right;intro;destruct H - |*:right;intro;destruct H2] - |elim T - [2:elim (decidable_eq_nat n n1) - [rewrite > H;left;reflexivity - |right;intro;destruct H1;apply (H Hcut)] - |1,3:right;intro;destruct H - |*:right;intro;destruct H2] - |elim T - [3:left;reflexivity - |1,2:right;intro;destruct H - |*:right;intro;destruct H2] - |elim T - [1,2,3:right;intro;destruct H2 - |elim (H t2) - [rewrite > H4;elim (H1 t3) - [rewrite > H5;left;reflexivity - |right;intro;apply H5;destruct H6;assumption] - |right;intro;apply H4;destruct H5;assumption] - |right;intro;destruct H4] - |elim T - [1,2,3:right;intro;destruct H2 - |right;intro;destruct H4 - |elim (H t2) - [rewrite > H4;elim (H1 t3) - [rewrite > H5;left;reflexivity - |right;intro;apply H5;destruct H6;assumption] - |right;intro;apply H4;destruct H5;assumption]]] +theorem narrowing:∀X,G,G1,U,P,M,N. + G1 ⊢ P ⊴ U → (∀G2,T.G2@G1 ⊢ U ⊴ T → G2@G1 ⊢ P ⊴ T) → G ⊢ M ⊴ N → + ∀l.G=l@(mk_bound true X U::G1) → l@(mk_bound true X P::G1) ⊢ M ⊴ N. +intros 10.elim H2 + [apply SA_Top + [rewrite > H5 in H3; + apply (WFE_Typ_subst ? ? ? ? ? ? ? H3 (JS_to_WFT1 ? ? ? H)) + |rewrite > H5 in H4;apply (WFT_env_incl ? ? H4);apply incl_fv_env] + |apply SA_Refl_TVar + [rewrite > H5 in H3;apply (WFE_Typ_subst ? ? ? ? ? ? ? H3); + apply (JS_to_WFT1 ? ? ? H) + |rewrite > H5 in H4;rewrite < fv_env_extends;apply H4] + |elim (decidable_eq_nat X n) + [apply (SA_Trans_TVar ? ? ? P) + [rewrite < H7;elim l1;simplify + [constructor 1|constructor 2;assumption] + |rewrite > append_cons;apply H1; + lapply (WFE_bound_bound true n t1 U ? ? H3) + [apply (JS_to_WFE ? ? ? H4) + |rewrite < Hletin;rewrite < append_cons;apply (H5 ? H6) + |rewrite < H7;rewrite > H6;elim l1;simplify + [constructor 1|constructor 2;assumption]]] + |apply (SA_Trans_TVar ? ? ? t1) + [rewrite > H6 in H3;apply (lookup_env_extends ? ? ? ? ? ? ? ? ? ? H3); + unfold;intro;apply H7;symmetry;assumption + |apply (H5 ? H6)]] + |apply (SA_Arrow ? ? ? ? ? (H4 ? H7) (H6 ? H7)) + |apply (SA_All ? ? ? ? ? (H4 ? H7));intros; + apply (H6 ? ? (mk_bound true X1 t2::l1)) + [rewrite > H7;rewrite > fv_env_extends;apply H8 + |simplify;rewrite < H7;reflexivity]] qed. -lemma decidable_eq_bound: ∀b1,b2:bound.(b1 = b2) ∨ (b1 ≠ b2). -intros;elim b1;elim b2;elim (decidable_eq_nat n n1) - [rewrite < H;elim (decidable_eq_Typ t t1) - [rewrite < H1;elim (bool_to_decidable_eq b b3) - [rewrite > H2;left;reflexivity - |right;intro;destruct H3;apply (H2 Hcut)] - |right;intro;destruct H2;apply (H1 Hcut1)] - |right;intro;destruct H1;apply (H Hcut1)] -qed. - -(* Lemma A.3 (Transitivity and Narrowing) *) - -lemma JS_trans_narrow : \forall Q. - (\forall G,T,U. - (JSubtype G T Q) \to (JSubtype G Q U) \to - (JSubtype G T U)) \land - (\forall G,H,X,P,M,N. - (JSubtype (H @ ((mk_bound true X Q) :: G)) M N) \to - (JSubtype G P Q) \to - (JSubtype (H @ ((mk_bound true X P) :: G)) M N)). -apply Typ_len_ind;intros 2; -cut (\forall G,T,P. - (JSubtype G T U) \to - (JSubtype G U P) \to - (JSubtype G T P)) - [split - [assumption - |cut (\forall G,M,N.(JSubtype G M N) \to - \forall G1,X,G2,P. - (G = G2 @ ((mk_bound true X U) :: G1)) \to - (JSubtype G1 P U) \to - (JSubtype (G2 @ ((mk_bound true X P) :: G1)) M N)) - [intros;apply (Hcut1 ? ? ? H2 ? ? ? ? ? H3);reflexivity - |intros;cut (incl ? (fv_env (G2 @ ((mk_bound true X U)::G1))) - (fv_env (G2 @ ((mk_bound true X P)::G1)))) - [intros;generalize in match H2;generalize in match Hcut1; - generalize in match Hcut;generalize in match G2;elim H1 - [apply SA_Top - [rewrite > H8 in H4;lapply (JS_to_WFT1 ? ? ? H3); - apply (WFE_Typ_subst ? ? ? ? ? ? ? H4 Hletin) - |rewrite > H8 in H5;apply (WFT_env_incl ? ? H5 ? H7)] - |apply SA_Refl_TVar - [rewrite > H8 in H4;apply (WFE_Typ_subst ? ? ? ? ? ? ? H4); - apply (JS_to_WFT1 ? ? ? H3) - |rewrite > H8 in H5;apply (H7 ? H5)] - |elim (decidable_eq_nat X n) - [apply (SA_Trans_TVar ? ? ? P) - [rewrite < H10;elim l1 - [simplify;constructor 1 - |simplify;elim (decidable_eq_bound (mk_bound true X P) t2) - [rewrite < H12;apply in_Base - |apply (in_Skip ? ? ? ? ? H12);assumption]] - |apply H7 - [lapply (H6 ? H7 H8 H9);lapply (JS_to_WFE ? ? ? Hletin); - apply (JS_weakening ? ? ? H3 ? Hletin1);unfold;intros; - elim l1 - [simplify; - elim (decidable_eq_bound x (mk_bound true X P)) - [rewrite < H12;apply in_Base - |apply (in_Skip ? ? ? ? ? H12);assumption] - |simplify;elim (decidable_eq_bound x t2) - [rewrite < H13;apply in_Base - |apply (in_Skip ? ? ? ? ? H13);assumption]] - |lapply (WFE_bound_bound true n t1 U ? ? H4) - [apply (JS_to_WFE ? ? ? H5) - |rewrite < Hletin;apply (H6 ? H7 H8 H9) - |rewrite > H9;rewrite > H10;elim l1;simplify - [constructor 1 - |elim (decidable_eq_bound (mk_bound true n U) t2) - [rewrite > H12;apply in_Base - |apply (in_Skip ? ? ? ? ? H12);assumption]]]]] - |apply (SA_Trans_TVar ? ? ? t1) - [rewrite > H9 in H4; - apply (lookup_env_extends ? ? ? ? ? ? ? ? ? ? H4); - unfold;intro;apply H10;symmetry;assumption - |apply (H6 ? H7 H8 H9)]] - |apply SA_Arrow - [apply (H5 ? H8 H9 H10) - |apply (H7 ? H8 H9 H10)] - |apply SA_All - [apply (H5 ? H8 H9 H10) - |intros;apply (H7 ? ? (mk_bound true X1 t2::l1) H8) - [rewrite > H10;cut ((fv_env (l1@(mk_bound true X P::G1))) = - (fv_env (l1@(mk_bound true X U::G1)))) - [unfold;intro;apply H11;rewrite > Hcut2;assumption - |elim l1 - [simplify;reflexivity - |elim t4;simplify;rewrite > H12;reflexivity]] - |simplify;apply (incl_nat_cons ? ? ? H9) - |simplify;rewrite < H10;reflexivity]]] - |cut ((fv_env (G2@(mk_bound true X U::G1))) = - (fv_env (G2@(mk_bound true X P::G1)))) - [rewrite > Hcut1;unfold;intros;assumption - |elim G2 - [simplify;reflexivity - |elim t;simplify;rewrite > H4;reflexivity]]]]] - |intros 4;generalize in match H;elim H1 - [inversion H5 - [intros;rewrite < H8;apply (SA_Top ? ? H2 H3) - |intros;destruct H9 - |intros;destruct H10 - |*:intros;destruct H11] - |assumption - |apply (SA_Trans_TVar ? ? ? ? H2);apply (H4 H5 H6) - |inversion H7 - [intros;apply (SA_Top ? ? H8);rewrite < H10;apply WFT_Arrow - [apply (JS_to_WFT2 ? ? ? H2) - |apply (JS_to_WFT1 ? ? ? H4)] - |intros;destruct H11 - |intros;destruct H12 - |intros;destruct H13;apply SA_Arrow - [rewrite > H12 in H2;rewrite < Hcut in H8; - lapply (H6 t2) - [elim Hletin;apply (H15 ? ? ? H8 H2) - |apply (t_len_arrow1 t2 t3)] - |rewrite > H12 in H4;rewrite < Hcut1 in H10; - lapply (H6 t3) - [elim Hletin;apply (H15 ? ? ? H4 H10) - |apply (t_len_arrow2 t2 t3)]] - |intros;destruct H13] - |inversion H7 - [intros;apply (SA_Top ? ? H8);rewrite < H10;apply WFT_Forall - [apply (JS_to_WFT2 ? ? ? H2) - |intros;lapply (H4 ? H13);lapply (JS_to_WFT1 ? ? ? Hletin); - apply (WFT_env_incl ? ? Hletin1);simplify;unfold;intros; - assumption] - |intros;destruct H11 - |intros;destruct H12 - |intros;destruct H13 - |intros;destruct H13;subst;apply SA_All - [lapply (H6 t4) - [elim Hletin;apply (H12 ? ? ? H8 H2) - |apply t_len_forall1] - |intros;(*destruct H12;*)subst; - lapply (H6 (subst_type_nat t5 (TFree X) O)) - [elim Hletin;apply H13 - [lapply (H6 t4) - [elim Hletin1;apply (H16 l1 [] X t6); - [simplify;apply H4;assumption +lemma JS_trans_prova: ∀T,G1.WFType G1 T → +∀G,R,U.incl ? (fv_env G1) (fv_env G) → G ⊢ R ⊴ T → G ⊢ T ⊴ U → G ⊢ R ⊴ U. +intros 3;elim H;clear H; try autobatch; + [rewrite > (JSubtype_Top ? ? H3);autobatch + |generalize in match H7;generalize in match H4;generalize in match H2; + generalize in match H5;clear H7 H4 H2 H5; + generalize in match (refl_eq ? (Arrow t t1)); + elim H6 in ⊢ (? ? ? %→%); clear H6; intros; destruct; + [apply (SA_Trans_TVar ? ? ? ? H);apply (H4 ? ? H8 H9);autobatch + |inversion H11;intros; destruct; autobatch depth=4 width=4 size=9; + ] + |generalize in match H7;generalize in match H4;generalize in match H2; + generalize in match H5;clear H7 H4 H2 H5; + generalize in match (refl_eq ? (Forall t t1));elim H6 in ⊢ (? ? ? %→%);destruct; + [apply (SA_Trans_TVar ? ? ? ? H);apply (H4 ? H7 H8 H9 H10);reflexivity + |inversion H11;intros;destruct; + [apply SA_Top + [autobatch + |apply WFT_Forall + [autobatch + |intros;lapply (H4 ? H13);autobatch]] + |apply SA_All + [autobatch paramodulation + |intros;apply (H10 X) + [intro;apply H15;apply H8;assumption + |intro;apply H15;apply H8;apply (WFT_to_incl ? ? ? H3); + assumption + |simplify;autobatch + |apply (narrowing X (mk_bound true X t::l1) + ? ? ? ? ? H7 ? ? []) + [intros;apply H9 + [unfold;intros;lapply (H8 ? H17);rewrite > fv_append; + autobatch + |apply (JS_weakening ? ? ? H7) + [autobatch + |unfold;intros;autobatch] |assumption] - |apply t_len_forall1] - |apply (H10 ? H12)] - |rewrite < eq_t_len_TFree_subst; - apply t_len_forall2]]]]] + |*:autobatch] + |autobatch]]]]] qed. -theorem JS_trans : \forall G,T,U,V.(JSubtype G T U) \to - (JSubtype G U V) \to - (JSubtype G T V). -intros;elim JS_trans_narrow;autobatch; +theorem JS_trans : ∀G,T,U,V.G ⊢ T ⊴ U → G ⊢ U ⊴ V → G ⊢ T ⊴ V. +intros 5;apply (JS_trans_prova ? G);autobatch; qed. -theorem JS_narrow : \forall G1,G2,X,P,Q,T,U. - (JSubtype (G2 @ (mk_bound true X Q :: G1)) T U) \to - (JSubtype G1 P Q) \to - (JSubtype (G2 @ (mk_bound true X P :: G1)) T U). -intros;elim JS_trans_narrow;autobatch; +theorem JS_narrow : ∀G1,G2,X,P,Q,T,U. + (G2 @ (mk_bound true X Q :: G1)) ⊢ T ⊴ U → G1 ⊢ P ⊴ Q → + (G2 @ (mk_bound true X P :: G1)) ⊢ T ⊴ U. +intros;apply (narrowing ? ? ? ? ? ? ? H1 ? H) [|autobatch] +intros;apply (JS_trans ? ? ? ? ? H2);apply (JS_weakening ? ? ? H1); + [autobatch|unfold;intros;autobatch] qed.