X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2FZ%2Fsigma_p.ma;h=c2bdb0901852f732e64cf4c026c82f2c71f78735;hb=070b44c9c2344967ca8c4531909614a0d4da2fbe;hp=24cb89395770c78770c6a1aa4f0fbc6d914a2fdc;hpb=a180bddcd4a8f35de3d7292162ba05d0077723aa;p=helm.git diff --git a/helm/software/matita/library/Z/sigma_p.ma b/helm/software/matita/library/Z/sigma_p.ma index 24cb89395..c2bdb0901 100644 --- a/helm/software/matita/library/Z/sigma_p.ma +++ b/helm/software/matita/library/Z/sigma_p.ma @@ -12,34 +12,39 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/Z/sigma_p.ma". - include "Z/times.ma". include "nat/primes.ma". include "nat/ord.ma". +include "nat/generic_iter_p.ma". -let rec sigma_p n p (g:nat \to Z) \def - match n with - [ O \Rightarrow OZ - | (S k) \Rightarrow - match p k with - [true \Rightarrow (g k)+(sigma_p k p g) - |false \Rightarrow sigma_p k p g] - ]. +(* sigma_p in Z is a specialization of iter_p_gen *) +definition sigma_p: nat \to (nat \to bool) \to (nat \to Z) \to Z \def +\lambda n, p, g. (iter_p_gen n p Z g OZ Zplus). +theorem symmetricZPlus: symmetric Z Zplus. +change with (\forall a,b:Z. (Zplus a b) = (Zplus b a)). +intros. +rewrite > sym_Zplus. +reflexivity. +qed. + theorem true_to_sigma_p_Sn: \forall n:nat. \forall p:nat \to bool. \forall g:nat \to Z. p n = true \to sigma_p (S n) p g = (g n)+(sigma_p n p g). -intros.simplify. -rewrite > H.reflexivity. +intros. +unfold sigma_p. +apply true_to_iter_p_gen_Sn. +assumption. qed. theorem false_to_sigma_p_Sn: \forall n:nat. \forall p:nat \to bool. \forall g:nat \to Z. p n = false \to sigma_p (S n) p g = sigma_p n p g. -intros.simplify. -rewrite > H.reflexivity. +intros. +unfold sigma_p. +apply false_to_iter_p_gen_Sn. +assumption. qed. theorem eq_sigma_p: \forall p1,p2:nat \to bool. @@ -47,32 +52,10 @@ theorem eq_sigma_p: \forall p1,p2:nat \to bool. (\forall x. x < n \to p1 x = p2 x) \to (\forall x. x < n \to g1 x = g2 x) \to sigma_p n p1 g1 = sigma_p n p2 g2. -intros 5.elim n - [reflexivity - |apply (bool_elim ? (p1 n1)) - [intro. - rewrite > (true_to_sigma_p_Sn ? ? ? H3). - rewrite > true_to_sigma_p_Sn - [apply eq_f2 - [apply H2.apply le_n. - |apply H - [intros.apply H1.apply le_S.assumption - |intros.apply H2.apply le_S.assumption - ] - ] - |rewrite < H3.apply sym_eq.apply H1.apply le_n - ] - |intro. - rewrite > (false_to_sigma_p_Sn ? ? ? H3). - rewrite > false_to_sigma_p_Sn - [apply H - [intros.apply H1.apply le_S.assumption - |intros.apply H2.apply le_S.assumption - ] - |rewrite < H3.apply sym_eq.apply H1.apply le_n - ] - ] - ] +intros. +unfold sigma_p. +apply eq_iter_p_gen; + assumption. qed. theorem eq_sigma_p1: \forall p1,p2:nat \to bool. @@ -80,42 +63,17 @@ theorem eq_sigma_p1: \forall p1,p2:nat \to bool. (\forall x. x < n \to p1 x = p2 x) \to (\forall x. x < n \to p1 x = true \to g1 x = g2 x) \to sigma_p n p1 g1 = sigma_p n p2 g2. -intros 5. -elim n - [reflexivity - |apply (bool_elim ? (p1 n1)) - [intro. - rewrite > (true_to_sigma_p_Sn ? ? ? H3). - rewrite > true_to_sigma_p_Sn - [apply eq_f2 - [apply H2 - [apply le_n|assumption] - |apply H - [intros.apply H1.apply le_S.assumption - |intros.apply H2 - [apply le_S.assumption|assumption] - ] - ] - |rewrite < H3.apply sym_eq.apply H1.apply le_n - ] - |intro. - rewrite > (false_to_sigma_p_Sn ? ? ? H3). - rewrite > false_to_sigma_p_Sn - [apply H - [intros.apply H1.apply le_S.assumption - |intros.apply H2 - [apply le_S.assumption|assumption] - ] - |rewrite < H3.apply sym_eq.apply H1.apply le_n - ] - ] - ] +intros. +unfold sigma_p. +apply eq_iter_p_gen1; + assumption. qed. theorem sigma_p_false: \forall g: nat \to Z.\forall n.sigma_p n (\lambda x.false) g = O. intros. -elim n[reflexivity|simplify.assumption] +unfold sigma_p. +apply iter_p_gen_false. qed. theorem sigma_p_plus: \forall n,k:nat.\forall p:nat \to bool. @@ -123,41 +81,23 @@ theorem sigma_p_plus: \forall n,k:nat.\forall p:nat \to bool. sigma_p (k+n) p g = sigma_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) + sigma_p n p g. intros. -elim k - [reflexivity - |apply (bool_elim ? (p (n1+n))) - [intro. - simplify in \vdash (? ? (? % ? ?) ?). - rewrite > (true_to_sigma_p_Sn ? ? ? H1). - rewrite > (true_to_sigma_p_Sn n1 (\lambda x.p (x+n)) ? H1). - rewrite > assoc_Zplus. - rewrite < H.reflexivity - |intro. - simplify in \vdash (? ? (? % ? ?) ?). - rewrite > (false_to_sigma_p_Sn ? ? ? H1). - rewrite > (false_to_sigma_p_Sn n1 (\lambda x.p (x+n)) ? H1). - assumption. - ] - ] +unfold sigma_p. +apply (iter_p_gen_plusA Z n k p g OZ Zplus) +[ apply symmetricZPlus. +| intros. + apply Zplus_z_OZ. +| apply associative_Zplus +] qed. theorem false_to_eq_sigma_p: \forall n,m:nat.n \le m \to \forall p:nat \to bool. \forall g: nat \to Z. (\forall i:nat. n \le i \to i < m \to p i = false) \to sigma_p m p g = sigma_p n p g. -intros 5. -elim H - [reflexivity - |simplify. - rewrite > H3 - [simplify. - apply H2. - intros. - apply H3[apply H4|apply le_S.assumption] - |assumption - |apply le_n - ] - ] +intros. +unfold sigma_p. +apply (false_to_eq_iter_p_gen); + assumption. qed. theorem sigma_p2 : @@ -170,57 +110,17 @@ sigma_p (n*m) sigma_p n p1 (\lambda x.sigma_p m p2 (g x)). intros. -elim n - [simplify.reflexivity - |apply (bool_elim ? (p1 n1)) - [intro. - rewrite > (true_to_sigma_p_Sn ? ? ? H1). - simplify in \vdash (? ? (? % ? ?) ?); - rewrite > sigma_p_plus. - rewrite < H. - apply eq_f2 - [apply eq_sigma_p - [intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H2). - rewrite > (mod_plus_times ? ? ? H2). - rewrite > H1. - simplify.reflexivity - |intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H2). - rewrite > (mod_plus_times ? ? ? H2). - rewrite > H1. - simplify.reflexivity. - ] - |reflexivity - ] - |intro. - rewrite > (false_to_sigma_p_Sn ? ? ? H1). - simplify in \vdash (? ? (? % ? ?) ?); - rewrite > sigma_p_plus. - rewrite > H. - apply (trans_eq ? ? (O+(sigma_p n1 p1 (\lambda x:nat.sigma_p m p2 (g x))))) - [apply eq_f2 - [rewrite > (eq_sigma_p ? (\lambda x.false) ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m))) - [apply sigma_p_false - |intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H2). - rewrite > (mod_plus_times ? ? ? H2). - rewrite > H1. - simplify.reflexivity - |intros.reflexivity. - ] - |reflexivity - ] - |reflexivity - ] - ] - ] +unfold sigma_p. +apply (iter_p_gen2 n m p1 p2 Z g OZ Zplus) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +] qed. (* a stronger, dependent version, required e.g. for dirichlet product *) + theorem sigma_p2' : \forall n,m:nat. \forall p1:nat \to bool. @@ -232,129 +132,28 @@ sigma_p (n*m) sigma_p n p1 (\lambda x.sigma_p m (p2 x) (g x)). intros. -elim n - [simplify.reflexivity - |apply (bool_elim ? (p1 n1)) - [intro. - rewrite > (true_to_sigma_p_Sn ? ? ? H1). - simplify in \vdash (? ? (? % ? ?) ?); - rewrite > sigma_p_plus. - rewrite < H. - apply eq_f2 - [apply eq_sigma_p - [intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H2). - rewrite > (mod_plus_times ? ? ? H2). - rewrite > H1. - simplify.reflexivity - |intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H2). - rewrite > (mod_plus_times ? ? ? H2). - rewrite > H1. - simplify.reflexivity. - ] - |reflexivity - ] - |intro. - rewrite > (false_to_sigma_p_Sn ? ? ? H1). - simplify in \vdash (? ? (? % ? ?) ?); - rewrite > sigma_p_plus. - rewrite > H. - apply (trans_eq ? ? (O+(sigma_p n1 p1 (\lambda x:nat.sigma_p m (p2 x) (g x))))) - [apply eq_f2 - [rewrite > (eq_sigma_p ? (\lambda x.false) ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m))) - [apply sigma_p_false - |intros. - rewrite > sym_plus. - rewrite > (div_plus_times ? ? ? H2). - rewrite > (mod_plus_times ? ? ? H2). - rewrite > H1. - simplify.reflexivity - |intros.reflexivity. - ] - |reflexivity - ] - |reflexivity - ] - ] - ] +unfold sigma_p. +apply (iter_p_gen2' n m p1 p2 Z g OZ Zplus) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +] qed. lemma sigma_p_gi: \forall g: nat \to Z. \forall n,i.\forall p:nat \to bool.i < n \to p i = true \to sigma_p n p g = g i + sigma_p n (\lambda x. andb (p x) (notb (eqb x i))) g. -intros 2. -elim n - [apply False_ind. - apply (not_le_Sn_O i). - assumption - |apply (bool_elim ? (p n1));intro - [elim (le_to_or_lt_eq i n1) - [rewrite > true_to_sigma_p_Sn - [rewrite > true_to_sigma_p_Sn - [rewrite < assoc_Zplus. - rewrite < sym_Zplus in \vdash (? ? ? (? % ?)). - rewrite > assoc_Zplus. - apply eq_f2 - [reflexivity - |apply H[assumption|assumption] - ] - |rewrite > H3.simplify. - change with (notb (eqb n1 i) = notb false). - apply eq_f. - apply not_eq_to_eqb_false. - unfold Not.intro. - apply (lt_to_not_eq ? ? H4). - apply sym_eq.assumption - ] - |assumption - ] - |rewrite > true_to_sigma_p_Sn - [rewrite > H4. - apply eq_f2 - [reflexivity - |rewrite > false_to_sigma_p_Sn - [apply eq_sigma_p - [intros. - elim (p x) - [simplify. - change with (notb false = notb (eqb x n1)). - apply eq_f. - apply sym_eq. - apply not_eq_to_eqb_false. - apply (lt_to_not_eq ? ? H5) - |reflexivity - ] - |intros.reflexivity - ] - |rewrite > H3. - rewrite > (eq_to_eqb_true ? ? (refl_eq ? n1)). - reflexivity - ] - ] - |assumption - ] - |apply le_S_S_to_le.assumption - ] - |rewrite > false_to_sigma_p_Sn - [elim (le_to_or_lt_eq i n1) - [rewrite > false_to_sigma_p_Sn - [apply H[assumption|assumption] - |rewrite > H3.reflexivity - ] - |apply False_ind. - apply not_eq_true_false. - rewrite < H2. - rewrite > H4. - assumption - |apply le_S_S_to_le.assumption - ] - |assumption - ] - ] - ] +intros. +unfold sigma_p. +apply (iter_p_gen_gi) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +| assumption +| assumption +] qed. theorem eq_sigma_p_gh: @@ -367,168 +166,23 @@ theorem eq_sigma_p_gh: (\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to (\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to (\forall j. j < n1 \to p2 j = true \to h1 j < n) \to -sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 (\lambda x.p2 x) g. -intros 4. -elim n - [generalize in match H5. - elim n1 - [reflexivity - |apply (bool_elim ? (p2 n2));intro - [apply False_ind. - apply (not_le_Sn_O (h1 n2)). - apply H7 - [apply le_n|assumption] - |rewrite > false_to_sigma_p_Sn - [apply H6. - intros. - apply H7[apply le_S.apply H9|assumption] - |assumption - ] - ] - ] - |apply (bool_elim ? (p1 n1));intro - [rewrite > true_to_sigma_p_Sn - [rewrite > (sigma_p_gi g n2 (h n1)) - [apply eq_f2 - [reflexivity - |apply H - [intros. - rewrite > H1 - [simplify. - change with ((\not eqb (h i) (h n1))= \not false). - apply eq_f. - apply not_eq_to_eqb_false. - unfold Not.intro. - apply (lt_to_not_eq ? ? H8). - rewrite < H2 - [rewrite < (H2 n1) - [apply eq_f.assumption|apply le_n|assumption] - |apply le_S.assumption - |assumption - ] - |apply le_S.assumption - |assumption - ] - |intros. - apply H2[apply le_S.assumption|assumption] - |intros. - apply H3[apply le_S.assumption|assumption] - |intros. - apply H4 - [assumption - |generalize in match H9. - elim (p2 j) - [reflexivity|assumption] - ] - |intros. - apply H5 - [assumption - |generalize in match H9. - elim (p2 j) - [reflexivity|assumption] - ] - |intros. - elim (le_to_or_lt_eq (h1 j) n1) - [assumption - |generalize in match H9. - elim (p2 j) - [simplify in H11. - absurd (j = (h n1)) - [rewrite < H10. - rewrite > H5 - [reflexivity|assumption|autobatch] - |apply eqb_false_to_not_eq. - generalize in match H11. - elim (eqb j (h n1)) - [apply sym_eq.assumption|reflexivity] - ] - |simplify in H11. - apply False_ind. - apply not_eq_true_false. - apply sym_eq.assumption - ] - |apply le_S_S_to_le. - apply H6 - [assumption - |generalize in match H9. - elim (p2 j) - [reflexivity|assumption] - ] - ] - ] - ] - |apply H3[apply le_n|assumption] - |apply H1[apply le_n|assumption] - ] - |assumption - ] - |rewrite > false_to_sigma_p_Sn - [apply H - [intros.apply H1[apply le_S.assumption|assumption] - |intros.apply H2[apply le_S.assumption|assumption] - |intros.apply H3[apply le_S.assumption|assumption] - |intros.apply H4[assumption|assumption] - |intros.apply H5[assumption|assumption] - |intros. - elim (le_to_or_lt_eq (h1 j) n1) - [assumption - |absurd (j = (h n1)) - [rewrite < H10. - rewrite > H5 - [reflexivity|assumption|assumption] - |unfold Not.intro. - apply not_eq_true_false. - rewrite < H7. - rewrite < H10. - rewrite > H4 - [reflexivity|assumption|assumption] - ] - |apply le_S_S_to_le. - apply H6[assumption|assumption] - ] - ] - |assumption - ] - ] - ] -qed. - -(* sigma_p and Ztimes *) -lemma Ztimes_sigma_pl: \forall z:Z.\forall n:nat.\forall p. \forall f. -z * (sigma_p n p f) = sigma_p n p (\lambda i.z*(f i)). +sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 p2 g. intros. -elim n - [rewrite > Ztimes_z_OZ.reflexivity - |apply (bool_elim ? (p n1)); intro - [rewrite > true_to_sigma_p_Sn - [rewrite > true_to_sigma_p_Sn - [rewrite < H. - apply distr_Ztimes_Zplus - |assumption - ] - |assumption - ] - |rewrite > false_to_sigma_p_Sn - [rewrite > false_to_sigma_p_Sn - [assumption - |assumption - ] - |assumption - ] - ] - ] +unfold sigma_p. +apply (eq_iter_p_gen_gh Z OZ Zplus ? ? ? g h h1 n n1 p1 p2) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +| assumption +| assumption +| assumption +| assumption +| assumption +| assumption +] qed. -lemma Ztimes_sigma_pr: \forall z:Z.\forall n:nat.\forall p. \forall f. -(sigma_p n p f) * z = sigma_p n p (\lambda i.(f i)*z). -intros. -rewrite < sym_Ztimes. -rewrite > Ztimes_sigma_pl. -apply eq_sigma_p - [intros.reflexivity - |intros.apply sym_Ztimes - ] -qed. theorem divides_exp_to_lt_ord:\forall n,m,j,p. O < n \to prime p \to p \ndivides n \to j \divides n*(exp p m) \to ord j p < S m. @@ -608,6 +262,7 @@ cut (O < j) ] qed. + theorem sigma_p_divides_b: \forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to \forall g: nat \to Z. @@ -615,153 +270,552 @@ sigma_p (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) g = sigma_p (S n) (\lambda x.divides_b x n) (\lambda x.sigma_p (S m) (\lambda y.true) (\lambda y.g (x*(exp p y)))). intros. -cut (O < p) - [rewrite < sigma_p2. - apply (trans_eq ? ? - (sigma_p (S n*S m) (\lambda x:nat.divides_b (x/S m) n) - (\lambda x:nat.g (x/S m*(p)\sup(x\mod S m))))) - [apply sym_eq. - apply (eq_sigma_p_gh g ? (p_ord_inv p (S m))) - [intros. - lapply (divides_b_true_to_lt_O ? ? H H4). - apply divides_to_divides_b_true - [rewrite > (times_n_O O). - apply lt_times - [assumption - |apply lt_O_exp.assumption +unfold sigma_p. +apply (iter_p_gen_divides Z OZ Zplus n m p ? ? ? g) +[ assumption +| assumption +| assumption +| apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +] +qed. + + +(* sigma_p and Ztimes *) +lemma Ztimes_sigma_pl: \forall z:Z.\forall n:nat.\forall p. \forall f. +z * (sigma_p n p f) = sigma_p n p (\lambda i.z*(f i)). +intros. +apply (distributive_times_plus_iter_p_gen Z Zplus OZ Ztimes n z p f) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +| apply symmetric_Ztimes +| apply distributive_Ztimes_Zplus +| intros. + rewrite > (Ztimes_z_OZ a). + reflexivity +] +qed. + +lemma Ztimes_sigma_pr: \forall z:Z.\forall n:nat.\forall p. \forall f. +(sigma_p n p f) * z = sigma_p n p (\lambda i.(f i)*z). +intros. +rewrite < sym_Ztimes. +rewrite > Ztimes_sigma_pl. +apply eq_sigma_p + [intros.reflexivity + |intros.apply sym_Ztimes + ] +qed. + + +theorem sigma_p_knm: +\forall g: nat \to Z. +\forall h2:nat \to nat \to nat. +\forall h11,h12:nat \to nat. +\forall k,n,m. +\forall p1,p21:nat \to bool. +\forall p22:nat \to nat \to bool. +(\forall x. x < k \to p1 x = true \to +p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true +\land h2 (h11 x) (h12 x) = x +\land (h11 x) < n \land (h12 x) < m) \to +(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to +p1 (h2 i j) = true \land +h11 (h2 i j) = i \land h12 (h2 i j) = j +\land h2 i j < k) \to +sigma_p k p1 g= +sigma_p n p21 (\lambda x:nat.sigma_p m (p22 x) (\lambda y. g (h2 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). +apply iter_p_gen_knm + [ apply symmetricZPlus + |apply associative_Zplus + | intro. + apply (Zplus_z_OZ a) + | exact h11 + | exact h12 + | assumption + | assumption + ] +qed. + + +theorem sigma_p2_eq: +\forall g: nat \to nat \to Z. +\forall h11,h12,h21,h22: nat \to nat \to nat. +\forall n1,m1,n2,m2. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to +p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true +\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j +\land h11 i j < n1 \land h12 i j < m1) \to +(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to +p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true +\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j +\land (h21 i j) < n2 \land (h22 i j) < m2) \to +sigma_p n1 p11 (\lambda x:nat .sigma_p m1 (p12 x) (\lambda y. g x y)) = +sigma_p n2 p21 (\lambda x:nat .sigma_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? (? ? ? ? (\lambda x:?.%) ? ?) ?). +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). + +apply(iter_p_gen_2_eq Z OZ Zplus ? ? ? g h11 h12 h21 h22 n1 m1 n2 m2 p11 p21 p12 p22) +[ apply symmetricZPlus +| apply associative_Zplus +| intro. + apply (Zplus_z_OZ a) +| assumption +| assumption +] +qed. + + + + +(* + + + + + +rewrite < sigma_p2'. +letin ha:= (\lambda x,y.(((h11 x y)*m1) + (h12 x y))). +letin ha12:= (\lambda x.(h21 (x/m1) (x \mod m1))). +letin ha22:= (\lambda x.(h22 (x/m1) (x \mod m1))). + +apply (trans_eq ? ? +(sigma_p n2 p21 (\lambda x:nat. sigma_p m2 (p22 x) + (\lambda y:nat.(g (((h11 x y)*m1+(h12 x y))/m1) (((h11 x y)*m1+(h12 x y))\mod m1)) ) ) )) +[ + apply (sigma_p_knm (\lambda e. (g (e/m1) (e \mod m1))) ha ha12 ha22);intros + [ elim (and_true ? ? H3). + cut(O \lt m1) + [ cut(x/m1 < n1) + [ cut((x \mod m1) < m1) + [ elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + split + [ split + [ split + [ split + [ assumption + | assumption + ] + | rewrite > H11. + rewrite > H10. + apply sym_eq. + apply div_mod. + assumption + ] + | assumption + ] + | assumption ] - |apply divides_times - [apply divides_b_true_to_divides.assumption - |apply (witness ? ? (p \sup (m-i \mod (S m)))). - rewrite < exp_plus_times. - apply eq_f. - rewrite > sym_plus. - apply plus_minus_m_m. - autobatch + | apply lt_mod_m_m. + assumption + ] + | apply (lt_times_n_to_lt m1) + [ assumption + | apply (le_to_lt_to_lt ? x) + [ apply (eq_plus_to_le ? ? (x \mod m1)). + apply div_mod. + assumption + | assumption + ] + ] + ] + | apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H6). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n. + ] + | elim (H ? ? H2 H3 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut(((h11 i j)*m1 + (h12 i j))/m1 = (h11 i j)) + [ cut(((h11 i j)*m1 + (h12 i j)) \mod m1 = (h12 i j)) + [ split + [ split + [ split + [ apply true_to_true_to_andb_true + [ rewrite > Hcut. + assumption + | rewrite > Hcut1. + rewrite > Hcut. + assumption + ] + | rewrite > Hcut1. + rewrite > Hcut. + assumption + ] + | rewrite > Hcut1. + rewrite > Hcut. + assumption ] + | cut(O \lt m1) + [ cut(O \lt n1) + [ apply (lt_to_le_to_lt ? ((h11 i j)*m1 + m1) ) + [ apply (lt_plus_r). + assumption + | rewrite > sym_plus. + rewrite > (sym_times (h11 i j) m1). + rewrite > times_n_Sm. + rewrite > sym_times. + apply (le_times_l). + assumption + ] + | apply not_le_to_lt.unfold.intro. + generalize in match H9. + apply (le_n_O_elim ? H8). + apply le_to_not_lt. + apply le_O_n + ] + | apply not_le_to_lt.unfold.intro. + generalize in match H7. + apply (le_n_O_elim ? H8). + apply le_to_not_lt. + apply le_O_n + ] ] - |intros. - lapply (divides_b_true_to_lt_O ? ? H H4). - unfold p_ord_inv. - rewrite > (p_ord_exp1 p ? (i \mod (S m)) (i/S m)) - [change with ((i/S m)*S m+i \mod S m=i). - apply sym_eq. - apply div_mod. - apply lt_O_S - |assumption - |unfold Not.intro. - apply H2. - apply (trans_divides ? (i/ S m)) - [assumption| - apply divides_b_true_to_divides;assumption] - |apply sym_times. + | rewrite > (mod_plus_times m1 (h11 i j) (h12 i j)). + reflexivity. + assumption + ] + | rewrite > (div_plus_times m1 (h11 i j) (h12 i j)). + reflexivity. + assumption + ] + ] +| apply (eq_sigma_p1) + [ intros. reflexivity + | intros. + apply (eq_sigma_p1) + [ intros. reflexivity + | intros. + rewrite > (div_plus_times) + [ rewrite > (mod_plus_times) + [ reflexivity + | elim (H x x1 H2 H4 H3 H5). + assumption ] - |intros. - apply le_S_S. - apply le_times - [apply le_S_S_to_le. - change with ((i/S m) < S n). - apply (lt_times_to_lt_l m). - apply (le_to_lt_to_lt ? i) - [autobatch|assumption] - |apply le_exp + | elim (H x x1 H2 H4 H3 H5). + assumption + ] + ] + ] +] +qed. + +rewrite < sigma_p2' in \vdash (? ? ? %). +apply sym_eq. +letin h := (\lambda x.(h11 (x/m2) (x\mod m2))*m1 + (h12 (x/m2) (x\mod m2))). +letin h1 := (\lambda x.(h21 (x/m1) (x\mod m1))*m2 + (h22 (x/m1) (x\mod m1))). +apply (trans_eq ? ? + (sigma_p (n2*m2) (\lambda x:nat.p21 (x/m2)\land p22 (x/m2) (x\mod m2)) + (\lambda x:nat.g ((h x)/m1) ((h x)\mod m1)))) + [clear h.clear h1. + apply eq_sigma_p1 + [intros.reflexivity + |intros. + cut (O < m2) + [cut (x/m2 < n2) + [cut (x \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + apply eq_f2 + [apply sym_eq. + apply div_plus_times. + assumption + | + apply sym_eq. + apply mod_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) [assumption - |apply le_S_S_to_le. - apply lt_mod_m_m. - apply lt_O_S + |apply (le_to_lt_to_lt ? x) + [apply (eq_plus_to_le ? ? (x \mod m2)). + apply div_mod. + assumption + |assumption + ] ] ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_inv - [apply divides_to_divides_b_true - [apply lt_O_ord_rem - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H4). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + ] + |apply (eq_sigma_p_gh ? h h1);intros + [cut (O < m2) + [cut (i/m2 < n2) + [cut (i \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 = + h11 (i/m2) (i\mod m2)) + [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 = + h12 (i/m2) (i\mod m2)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H6. + rewrite > H12. + reflexivity + |apply mod_plus_times. + assumption ] - |apply (divides_exp_to_divides_ord_rem ? m ? ? H H1 H2). - apply divides_b_true_to_divides. + |apply div_plus_times. assumption ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? i) + [apply (eq_plus_to_le ? ? (i \mod m2)). + apply div_mod. + assumption |assumption + ] ] - |apply (divides_exp_to_lt_ord ? ? ? ? H H1 H2). - apply (divides_b_true_to_divides ? ? H4). - apply (divides_b_true_to_lt_O ? ? H4) ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_inv - [rewrite > mod_p_ord_inv - [rewrite > sym_times. - apply sym_eq. - apply exp_ord - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H4). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m2) + [cut (i/m2 < n2) + [cut (i \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 = + h11 (i/m2) (i\mod m2)) + [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 = + h12 (i/m2) (i\mod m2)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H10. + rewrite > H11. + apply sym_eq. + apply div_mod. + assumption + |apply mod_plus_times. + assumption ] - |apply (divides_exp_to_lt_ord ? ? ? ? H H1 H2). - apply (divides_b_true_to_divides ? ? H4). - apply (divides_b_true_to_lt_O ? ? H4) + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? i) + [apply (eq_plus_to_le ? ? (i \mod m2)). + apply div_mod. + assumption + |assumption ] - |assumption ] - |apply (divides_exp_to_lt_ord ? ? ? ? H H1 H2). - apply (divides_b_true_to_divides ? ? H4). - apply (divides_b_true_to_lt_O ? ? H4). ] - |intros. - rewrite > eq_p_ord_inv. - rewrite > sym_plus. - apply (lt_to_le_to_lt ? (S m +ord_rem j p*S m)) - [apply lt_plus_l. - apply le_S_S. - cut (m = ord (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H4). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m2) + [cut (i/m2 < n2) + [cut (i \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + apply lt_times_plus_times + [assumption|assumption] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? i) + [apply (eq_plus_to_le ? ? (i \mod m2)). + apply div_mod. + assumption |assumption - |apply divides_b_true_to_divides. + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m1) + [cut (j/m1 < n1) + [cut (j \mod m1 < m1) + [elim (and_true ? ? H3). + elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 = + h21 (j/m1) (j\mod m1)) + [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 = + h22 (j/m1) (j\mod m1)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H6. + rewrite > H12. + reflexivity + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. assumption ] - |unfold ord. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m1) + [assumption + |apply (le_to_lt_to_lt ? j) + [apply (eq_plus_to_le ? ? (j \mod m1)). + apply div_mod. + assumption |assumption - |reflexivity ] ] - |change with (S (ord_rem j p)*S m \le S n*S m). - apply le_times_l. - apply le_S_S. - apply divides_to_le + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m1) + [cut (j/m1 < n1) + [cut (j \mod m1 < m1) + [elim (and_true ? ? H3). + elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 = + h21 (j/m1) (j\mod m1)) + [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 = + h22 (j/m1) (j\mod m1)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H10. + rewrite > H11. + apply sym_eq. + apply div_mod. + assumption + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m1) [assumption - |apply (divides_exp_to_divides_ord_rem ? m ? ? H H1 H2). - apply divides_b_true_to_divides. + |apply (le_to_lt_to_lt ? j) + [apply (eq_plus_to_le ? ? (j \mod m1)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m1) + [cut (j/m1 < n1) + [cut (j \mod m1 < m1) + [elim (and_true ? ? H3). + elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + apply (lt_times_plus_times ? ? ? m2) + [assumption|assumption] + |apply lt_mod_m_m. assumption + ] + |apply (lt_times_n_to_lt m1) + [assumption + |apply (le_to_lt_to_lt ? j) + [apply (eq_plus_to_le ? ? (j \mod m1)). + apply div_mod. + assumption + |assumption + ] ] ] - ] - |apply eq_sigma_p - [intros. - elim (divides_b (x/S m) n);reflexivity - |intros.reflexivity + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n ] ] - |elim H1.apply lt_to_le.assumption ] qed. - +*) + +