X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2FZ%2Fsigma_p.ma;h=c2bdb0901852f732e64cf4c026c82f2c71f78735;hb=8ae1653eb75d2b57c50e077c49cb9d078313ea9d;hp=dbd5666c9ff9feea1b5efd23eb8859b86d509a11;hpb=c883f2899a5f0604b65287f913292d049d9081a5;p=helm.git diff --git a/helm/software/matita/library/Z/sigma_p.ma b/helm/software/matita/library/Z/sigma_p.ma index dbd5666c9..c2bdb0901 100644 --- a/helm/software/matita/library/Z/sigma_p.ma +++ b/helm/software/matita/library/Z/sigma_p.ma @@ -12,16 +12,14 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/Z/sigma_p.ma". - include "Z/times.ma". include "nat/primes.ma". include "nat/ord.ma". -include "nat/generic_sigma_p.ma". +include "nat/generic_iter_p.ma". -(* sigma_p in Z is a specialization of sigma_p_gen *) +(* sigma_p in Z is a specialization of iter_p_gen *) definition sigma_p: nat \to (nat \to bool) \to (nat \to Z) \to Z \def -\lambda n, p, g. (sigma_p_gen n p Z g OZ Zplus). +\lambda n, p, g. (iter_p_gen n p Z g OZ Zplus). theorem symmetricZPlus: symmetric Z Zplus. change with (\forall a,b:Z. (Zplus a b) = (Zplus b a)). @@ -36,7 +34,7 @@ p n = true \to sigma_p (S n) p g = (g n)+(sigma_p n p g). intros. unfold sigma_p. -apply true_to_sigma_p_Sn_gen. +apply true_to_iter_p_gen_Sn. assumption. qed. @@ -45,7 +43,7 @@ theorem false_to_sigma_p_Sn: p n = false \to sigma_p (S n) p g = sigma_p n p g. intros. unfold sigma_p. -apply false_to_sigma_p_Sn_gen. +apply false_to_iter_p_gen_Sn. assumption. qed. @@ -56,7 +54,7 @@ theorem eq_sigma_p: \forall p1,p2:nat \to bool. sigma_p n p1 g1 = sigma_p n p2 g2. intros. unfold sigma_p. -apply eq_sigma_p_gen; +apply eq_iter_p_gen; assumption. qed. @@ -67,7 +65,7 @@ theorem eq_sigma_p1: \forall p1,p2:nat \to bool. sigma_p n p1 g1 = sigma_p n p2 g2. intros. unfold sigma_p. -apply eq_sigma_p1_gen; +apply eq_iter_p_gen1; assumption. qed. @@ -75,7 +73,7 @@ theorem sigma_p_false: \forall g: nat \to Z.\forall n.sigma_p n (\lambda x.false) g = O. intros. unfold sigma_p. -apply sigma_p_false_gen. +apply iter_p_gen_false. qed. theorem sigma_p_plus: \forall n,k:nat.\forall p:nat \to bool. @@ -84,10 +82,10 @@ sigma_p (k+n) p g = sigma_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) + sigma_p n p g. intros. unfold sigma_p. -apply (sigma_p_plusA_gen Z n k p g OZ Zplus) +apply (iter_p_gen_plusA Z n k p g OZ Zplus) [ apply symmetricZPlus. | intros. - apply cic:/matita/Z/plus/Zplus_z_OZ.con + apply Zplus_z_OZ. | apply associative_Zplus ] qed. @@ -98,7 +96,7 @@ theorem false_to_eq_sigma_p: \forall n,m:nat.n \le m \to p i = false) \to sigma_p m p g = sigma_p n p g. intros. unfold sigma_p. -apply (false_to_eq_sigma_p_gen); +apply (false_to_eq_iter_p_gen); assumption. qed. @@ -113,7 +111,7 @@ sigma_p n p1 (\lambda x.sigma_p m p2 (g x)). intros. unfold sigma_p. -apply (sigma_p2_gen n m p1 p2 Z g OZ Zplus) +apply (iter_p_gen2 n m p1 p2 Z g OZ Zplus) [ apply symmetricZPlus | apply associative_Zplus | intros. @@ -135,7 +133,7 @@ sigma_p n p1 (\lambda x.sigma_p m (p2 x) (g x)). intros. unfold sigma_p. -apply (sigma_p2_gen' n m p1 p2 Z g OZ Zplus) +apply (iter_p_gen2' n m p1 p2 Z g OZ Zplus) [ apply symmetricZPlus | apply associative_Zplus | intros. @@ -148,7 +146,7 @@ lemma sigma_p_gi: \forall g: nat \to Z. sigma_p n p g = g i + sigma_p n (\lambda x. andb (p x) (notb (eqb x i))) g. intros. unfold sigma_p. -apply (sigma_p_gi_gen) +apply (iter_p_gen_gi) [ apply symmetricZPlus | apply associative_Zplus | intros. @@ -168,10 +166,10 @@ theorem eq_sigma_p_gh: (\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to (\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to (\forall j. j < n1 \to p2 j = true \to h1 j < n) \to -sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 (\lambda x.p2 x) g. +sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 p2 g. intros. unfold sigma_p. -apply (eq_sigma_p_gh_gen Z OZ Zplus ? ? ? g h h1 n n1 p1 p2) +apply (eq_iter_p_gen_gh Z OZ Zplus ? ? ? g h h1 n n1 p1 p2) [ apply symmetricZPlus | apply associative_Zplus | intros. @@ -273,7 +271,7 @@ sigma_p (S n) (\lambda x.divides_b x n) (\lambda x.sigma_p (S m) (\lambda y.true) (\lambda y.g (x*(exp p y)))). intros. unfold sigma_p. -apply (sigma_p_divides_gen Z OZ Zplus n m p ? ? ? g) +apply (iter_p_gen_divides Z OZ Zplus n m p ? ? ? g) [ assumption | assumption | assumption @@ -289,7 +287,7 @@ qed. lemma Ztimes_sigma_pl: \forall z:Z.\forall n:nat.\forall p. \forall f. z * (sigma_p n p f) = sigma_p n p (\lambda i.z*(f i)). intros. -apply (distributive_times_plus_sigma_p_generic Z Zplus OZ Ztimes n z p f) +apply (distributive_times_plus_iter_p_gen Z Zplus OZ Ztimes n z p f) [ apply symmetricZPlus | apply associative_Zplus | intros. @@ -311,4 +309,513 @@ apply eq_sigma_p [intros.reflexivity |intros.apply sym_Ztimes ] -qed. \ No newline at end of file +qed. + + +theorem sigma_p_knm: +\forall g: nat \to Z. +\forall h2:nat \to nat \to nat. +\forall h11,h12:nat \to nat. +\forall k,n,m. +\forall p1,p21:nat \to bool. +\forall p22:nat \to nat \to bool. +(\forall x. x < k \to p1 x = true \to +p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true +\land h2 (h11 x) (h12 x) = x +\land (h11 x) < n \land (h12 x) < m) \to +(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to +p1 (h2 i j) = true \land +h11 (h2 i j) = i \land h12 (h2 i j) = j +\land h2 i j < k) \to +sigma_p k p1 g= +sigma_p n p21 (\lambda x:nat.sigma_p m (p22 x) (\lambda y. g (h2 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). +apply iter_p_gen_knm + [ apply symmetricZPlus + |apply associative_Zplus + | intro. + apply (Zplus_z_OZ a) + | exact h11 + | exact h12 + | assumption + | assumption + ] +qed. + + +theorem sigma_p2_eq: +\forall g: nat \to nat \to Z. +\forall h11,h12,h21,h22: nat \to nat \to nat. +\forall n1,m1,n2,m2. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to +p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true +\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j +\land h11 i j < n1 \land h12 i j < m1) \to +(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to +p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true +\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j +\land (h21 i j) < n2 \land (h22 i j) < m2) \to +sigma_p n1 p11 (\lambda x:nat .sigma_p m1 (p12 x) (\lambda y. g x y)) = +sigma_p n2 p21 (\lambda x:nat .sigma_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? (? ? ? ? (\lambda x:?.%) ? ?) ?). +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). + +apply(iter_p_gen_2_eq Z OZ Zplus ? ? ? g h11 h12 h21 h22 n1 m1 n2 m2 p11 p21 p12 p22) +[ apply symmetricZPlus +| apply associative_Zplus +| intro. + apply (Zplus_z_OZ a) +| assumption +| assumption +] +qed. + + + + +(* + + + + + +rewrite < sigma_p2'. +letin ha:= (\lambda x,y.(((h11 x y)*m1) + (h12 x y))). +letin ha12:= (\lambda x.(h21 (x/m1) (x \mod m1))). +letin ha22:= (\lambda x.(h22 (x/m1) (x \mod m1))). + +apply (trans_eq ? ? +(sigma_p n2 p21 (\lambda x:nat. sigma_p m2 (p22 x) + (\lambda y:nat.(g (((h11 x y)*m1+(h12 x y))/m1) (((h11 x y)*m1+(h12 x y))\mod m1)) ) ) )) +[ + apply (sigma_p_knm (\lambda e. (g (e/m1) (e \mod m1))) ha ha12 ha22);intros + [ elim (and_true ? ? H3). + cut(O \lt m1) + [ cut(x/m1 < n1) + [ cut((x \mod m1) < m1) + [ elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + split + [ split + [ split + [ split + [ assumption + | assumption + ] + | rewrite > H11. + rewrite > H10. + apply sym_eq. + apply div_mod. + assumption + ] + | assumption + ] + | assumption + ] + | apply lt_mod_m_m. + assumption + ] + | apply (lt_times_n_to_lt m1) + [ assumption + | apply (le_to_lt_to_lt ? x) + [ apply (eq_plus_to_le ? ? (x \mod m1)). + apply div_mod. + assumption + | assumption + ] + ] + ] + | apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H6). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n. + ] + | elim (H ? ? H2 H3 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut(((h11 i j)*m1 + (h12 i j))/m1 = (h11 i j)) + [ cut(((h11 i j)*m1 + (h12 i j)) \mod m1 = (h12 i j)) + [ split + [ split + [ split + [ apply true_to_true_to_andb_true + [ rewrite > Hcut. + assumption + | rewrite > Hcut1. + rewrite > Hcut. + assumption + ] + | rewrite > Hcut1. + rewrite > Hcut. + assumption + ] + | rewrite > Hcut1. + rewrite > Hcut. + assumption + ] + | cut(O \lt m1) + [ cut(O \lt n1) + [ apply (lt_to_le_to_lt ? ((h11 i j)*m1 + m1) ) + [ apply (lt_plus_r). + assumption + | rewrite > sym_plus. + rewrite > (sym_times (h11 i j) m1). + rewrite > times_n_Sm. + rewrite > sym_times. + apply (le_times_l). + assumption + ] + | apply not_le_to_lt.unfold.intro. + generalize in match H9. + apply (le_n_O_elim ? H8). + apply le_to_not_lt. + apply le_O_n + ] + | apply not_le_to_lt.unfold.intro. + generalize in match H7. + apply (le_n_O_elim ? H8). + apply le_to_not_lt. + apply le_O_n + ] + ] + | rewrite > (mod_plus_times m1 (h11 i j) (h12 i j)). + reflexivity. + assumption + ] + | rewrite > (div_plus_times m1 (h11 i j) (h12 i j)). + reflexivity. + assumption + ] + ] +| apply (eq_sigma_p1) + [ intros. reflexivity + | intros. + apply (eq_sigma_p1) + [ intros. reflexivity + | intros. + rewrite > (div_plus_times) + [ rewrite > (mod_plus_times) + [ reflexivity + | elim (H x x1 H2 H4 H3 H5). + assumption + ] + | elim (H x x1 H2 H4 H3 H5). + assumption + ] + ] + ] +] +qed. + +rewrite < sigma_p2' in \vdash (? ? ? %). +apply sym_eq. +letin h := (\lambda x.(h11 (x/m2) (x\mod m2))*m1 + (h12 (x/m2) (x\mod m2))). +letin h1 := (\lambda x.(h21 (x/m1) (x\mod m1))*m2 + (h22 (x/m1) (x\mod m1))). +apply (trans_eq ? ? + (sigma_p (n2*m2) (\lambda x:nat.p21 (x/m2)\land p22 (x/m2) (x\mod m2)) + (\lambda x:nat.g ((h x)/m1) ((h x)\mod m1)))) + [clear h.clear h1. + apply eq_sigma_p1 + [intros.reflexivity + |intros. + cut (O < m2) + [cut (x/m2 < n2) + [cut (x \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + apply eq_f2 + [apply sym_eq. + apply div_plus_times. + assumption + | + apply sym_eq. + apply mod_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? x) + [apply (eq_plus_to_le ? ? (x \mod m2)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + ] + |apply (eq_sigma_p_gh ? h h1);intros + [cut (O < m2) + [cut (i/m2 < n2) + [cut (i \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 = + h11 (i/m2) (i\mod m2)) + [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 = + h12 (i/m2) (i\mod m2)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H6. + rewrite > H12. + reflexivity + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? i) + [apply (eq_plus_to_le ? ? (i \mod m2)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m2) + [cut (i/m2 < n2) + [cut (i \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 = + h11 (i/m2) (i\mod m2)) + [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 = + h12 (i/m2) (i\mod m2)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H10. + rewrite > H11. + apply sym_eq. + apply div_mod. + assumption + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? i) + [apply (eq_plus_to_le ? ? (i \mod m2)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m2) + [cut (i/m2 < n2) + [cut (i \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + apply lt_times_plus_times + [assumption|assumption] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? i) + [apply (eq_plus_to_le ? ? (i \mod m2)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m1) + [cut (j/m1 < n1) + [cut (j \mod m1 < m1) + [elim (and_true ? ? H3). + elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 = + h21 (j/m1) (j\mod m1)) + [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 = + h22 (j/m1) (j\mod m1)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H6. + rewrite > H12. + reflexivity + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m1) + [assumption + |apply (le_to_lt_to_lt ? j) + [apply (eq_plus_to_le ? ? (j \mod m1)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m1) + [cut (j/m1 < n1) + [cut (j \mod m1 < m1) + [elim (and_true ? ? H3). + elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 = + h21 (j/m1) (j\mod m1)) + [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 = + h22 (j/m1) (j\mod m1)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H10. + rewrite > H11. + apply sym_eq. + apply div_mod. + assumption + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m1) + [assumption + |apply (le_to_lt_to_lt ? j) + [apply (eq_plus_to_le ? ? (j \mod m1)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m1) + [cut (j/m1 < n1) + [cut (j \mod m1 < m1) + [elim (and_true ? ? H3). + elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + apply (lt_times_plus_times ? ? ? m2) + [assumption|assumption] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m1) + [assumption + |apply (le_to_lt_to_lt ? j) + [apply (eq_plus_to_le ? ? (j \mod m1)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + ] + ] +qed. +*) + +