X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Falgebra%2Fgroups.ma;h=1301d34f923725ea583d1ea4fe47403e869fa33c;hb=3cc1aec78e4c51aa766127487f19a3d38a4b56ae;hp=970a5e38892ae9a3b2c46c9ce92b81f7520fb2b2;hpb=43d3607afd27248d8df1bca20908307330a3871a;p=helm.git diff --git a/helm/software/matita/library/algebra/groups.ma b/helm/software/matita/library/algebra/groups.ma index 970a5e388..1301d34f9 100644 --- a/helm/software/matita/library/algebra/groups.ma +++ b/helm/software/matita/library/algebra/groups.ma @@ -25,7 +25,7 @@ record PreGroup : Type ≝ }. record isGroup (G:PreGroup) : Prop ≝ - { is_monoid: isMonoid G; + { is_monoid:> isMonoid G; inv_is_left_inverse: is_left_inverse (mk_Monoid ? is_monoid) (inv G); inv_is_right_inverse: is_right_inverse (mk_Monoid ? is_monoid) (inv G) }. @@ -73,11 +73,11 @@ intros; unfold left_cancellable; unfold injective; intros (x y z); -rewrite < (e_is_left_unit ? (is_monoid ? G)); -rewrite < (e_is_left_unit ? (is_monoid ? G) z); +rewrite < (e_is_left_unit ? G); +rewrite < (e_is_left_unit ? G z); rewrite < (inv_is_left_inverse ? G x); -rewrite > (associative ? (is_semi_group ? (is_monoid ? G))); -rewrite > (associative ? (is_semi_group ? (is_monoid ? G))); +rewrite > (associative ? (is_semi_group ? ( G))); +rewrite > (associative ? (is_semi_group ? ( G))); apply eq_f; assumption. qed. @@ -90,11 +90,11 @@ unfold right_cancellable; unfold injective; simplify;fold simplify (op G); intros (x y z); -rewrite < (e_is_right_unit ? (is_monoid ? G)); -rewrite < (e_is_right_unit ? (is_monoid ? G) z); +rewrite < (e_is_right_unit ? ( G)); +rewrite < (e_is_right_unit ? ( G) z); rewrite < (inv_is_right_inverse ? G x); -rewrite < (associative ? (is_semi_group ? (is_monoid ? G))); -rewrite < (associative ? (is_semi_group ? (is_monoid ? G))); +rewrite < (associative ? (is_semi_group ? ( G))); +rewrite < (associative ? (is_semi_group ? ( G))); rewrite > H; reflexivity. qed. @@ -128,9 +128,9 @@ theorem eq_opxy_z_to_eq_x_opzinvy: ∀G:Group. ∀x,y,z:G. x·y=z → x = z·y \sup -1. intros; apply (eq_op_x_y_op_z_y_to_eq ? y); -rewrite > (associative ? (is_semi_group ? (is_monoid ? G))); +rewrite > (associative ? G); rewrite > (inv_is_left_inverse ? G); -rewrite > (e_is_right_unit ? (is_monoid ? G)); +rewrite > (e_is_right_unit ? G); assumption. qed. @@ -138,12 +138,25 @@ theorem eq_opxy_z_to_eq_y_opinvxz: ∀G:Group. ∀x,y,z:G. x·y=z → y = x \sup -1·z. intros; apply (eq_op_x_y_op_x_z_to_eq ? x); -rewrite < (associative ? (is_semi_group ? (is_monoid ? G))); +rewrite < (associative ? G); rewrite > (inv_is_right_inverse ? G); rewrite > (e_is_left_unit ? (is_monoid ? G)); assumption. qed. +theorem eq_inv_op_x_y_op_inv_y_inv_x: + ∀G:Group. ∀x,y:G. (x·y) \sup -1 = y \sup -1 · x \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (x·y)); +rewrite > (inv_is_left_inverse ? G); +rewrite < (associative ? G); +rewrite > (associative ? G (y \sup -1)); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_right_unit ? G); +rewrite > (inv_is_left_inverse ? G); +reflexivity. +qed. + (* Morphisms *) record morphism (G,G':Group) : Type ≝ @@ -161,9 +174,9 @@ theorem morphism_to_eq_f_1_1: ∀G,G'.∀f:morphism G G'.f˜1 = 1. intros; apply (eq_op_x_y_op_z_y_to_eq G' (f˜1)); -rewrite > (e_is_left_unit ? (is_monoid ? G') ?); +rewrite > (e_is_left_unit ? G' ?); rewrite < (f_morph ? ? f); -rewrite > (e_is_left_unit ? (is_monoid ? G)); +rewrite > (e_is_left_unit ? G); reflexivity. qed. @@ -179,7 +192,7 @@ apply (morphism_to_eq_f_1_1 ? ? f). qed. record monomorphism (G,G':Group) : Type ≝ - { morphism: morphism G G'; + { morphism:> morphism G G'; injective: injective ? ? (image ? ? morphism) }. @@ -187,7 +200,7 @@ record monomorphism (G,G':Group) : Type ≝ record subgroup (G:Group) : Type ≝ { group: Group; - embed: monomorphism group G + embed:> monomorphism group G }. notation "hvbox(x \sub H)" with precedence 79 @@ -195,18 +208,16 @@ for @{ 'subgroupimage $H $x }. interpretation "Subgroup image" 'subgroupimage H x = (cic:/matita/algebra/groups/image.con _ _ - (cic:/matita/algebra/groups/morphism.con _ _ - (cic:/matita/algebra/groups/embed.con _ H)) - x). + (cic:/matita/algebra/groups/morphism_of_subgroup.con _ H) x). -definition belongs_to_subgroup ≝ +definition member_of_subgroup ≝ λG.λH:subgroup G.λx:G.∃y.x=y \sub H. -notation "hvbox(x ∈ H)" with precedence 79 -for @{ 'belongs_to $x $H }. +notation "hvbox(x break ∈ H)" with precedence 79 +for @{ 'member_of $x $H }. -interpretation "Belongs to subgroup" 'belongs_to x H = - (cic:/matita/algebra/groups/belongs_to_subgroup.con _ H x). +interpretation "Member of subgroup" 'member_of x H = + (cic:/matita/algebra/groups/member_of_subgroup.con _ H x). (* Left cosets *) @@ -219,12 +230,12 @@ record left_coset (G:Group) : Type ≝ interpretation "Left_coset" 'times x C = (cic:/matita/algebra/groups/left_coset.ind#xpointer(1/1/1) _ x C). -definition belongs_to_left_coset ≝ +definition member_of_left_coset ≝ λG:Group.λC:left_coset G.λx:G. ∃y.x=(element ? C)·y \sub (subgrp ? C). -interpretation "Belongs to left_coset" 'belongs_to x C = - (cic:/matita/algebra/groups/belongs_to_left_coset.con _ C x). +interpretation "Member of left_coset" 'member_of x C = + (cic:/matita/algebra/groups/member_of_left_coset.con _ C x). definition left_coset_eq ≝ λG.λC,C':left_coset G. @@ -244,31 +255,31 @@ for @{ 'disjoint $a $b }. interpretation "Left cosets disjoint" 'disjoint C C' = (cic:/matita/algebra/groups/left_coset_disjoint.con _ C C'). -(* (* The following should be a one-shot alias! *) -alias symbol "belongs_to" (instance 0) = "Belongs to subgroup". -theorem foo: - ∀G.∀x,y:(Type_of_Group G).∀H:subgroup G. - (x \sup -1 ·y) ∈ H → (mk_left_coset ? x H) = (mk_left_coset ? y H). +alias symbol "member_of" (instance 0) = "Member of subgroup". +theorem member_of_subgroup_op_inv_x_y_to_left_coset_eq: + ∀G.∀x,y.∀H:subgroup G. (x \sup -1 ·y) ∈ H → x*H = y*H. intros; unfold left_coset_eq; -simplify in ⊢ (? → ? ? ? (? ? ? (? ? ? (? ? ? (? ? %)) ?))); simplify in ⊢ (? → ? ? ? (? ? % ?)); +simplify in ⊢ (? → ? ? ? (? ? ? (? ? ? (? ? %) ?))); simplify in ⊢ (? % → ?); intros; -unfold belongs_to_left_coset; -simplify in ⊢ (? ? (λy:?.? ? ? (? ? ? (? ? ? (? ? ? (? ? %)) ?)))); +unfold member_of_left_coset; +simplify in ⊢ (? ? (λy:?.? ? ? (? ? ? (? ? ? (? ? %) ?)))); simplify in ⊢ (? ? (λy:? %.?)); simplify in ⊢ (? ? (λy:?.? ? ? (? ? % ?))); -unfold belongs_to_subgroup in H1; +unfold member_of_subgroup in H1; elim H1; clear H1; exists; -[ -| +[ apply (a\sup-1 · x1) +| rewrite > (f_morph ? ? (morphism ? ? H)); + rewrite > (eq_image_inv_inv_image ? ? + rewrite < H2; + rewrite > (eq_inv_op_x_y_op_inv_y_inv_x ? ? ? ? H2); ]. qed. -*) (*theorem foo: \forall G:Group. \forall x1,x2:G. \forall H:subgroup G.