X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Falgebra%2Fgroups.ma;h=c83b3d2d0cc4359f982cf24cdcab9b869e72489f;hb=9eabe046c1182960de8cfdba96c5414224e3a61e;hp=e9b144acc76f3f57093c4140decd89daca7ea240;hpb=e1b382b7a82e69cb009571017c16a3665f9946c4;p=helm.git diff --git a/helm/software/matita/library/algebra/groups.ma b/helm/software/matita/library/algebra/groups.ma index e9b144acc..c83b3d2d0 100644 --- a/helm/software/matita/library/algebra/groups.ma +++ b/helm/software/matita/library/algebra/groups.ma @@ -12,8 +12,6 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/algebra/groups/". - include "algebra/monoids.ma". include "nat/le_arith.ma". include "datatypes/bool.ma". @@ -190,7 +188,7 @@ for @{ 'subgroupimage $H $x }. interpretation "Subgroup image" 'subgroupimage H x = (cic:/matita/algebra/groups/image.con _ _ - (cic:/matita/algebra/groups/morphism_of_subgroup.con _ H) x). + (cic:/matita/algebra/groups/morphism_OF_subgroup.con _ H) x). definition member_of_subgroup ≝ λG.λH:subgroup G.λx:G.∃y.x=y \sub H. @@ -198,8 +196,15 @@ definition member_of_subgroup ≝ notation "hvbox(x break ∈ H)" with precedence 79 for @{ 'member_of $x $H }. +notation "hvbox(x break ∉ H)" with precedence 79 +for @{ 'not_member_of $x $H }. + interpretation "Member of subgroup" 'member_of x H = (cic:/matita/algebra/groups/member_of_subgroup.con _ H x). + +interpretation "Not member of subgroup" 'not_member_of x H = + (cic:/matita/logic/connectives/Not.con + (cic:/matita/algebra/groups/member_of_subgroup.con _ H x)). (* Left cosets *) @@ -242,7 +247,6 @@ alias symbol "member_of" (instance 0) = "Member of subgroup". theorem member_of_subgroup_op_inv_x_y_to_left_coset_eq: ∀G.∀x,y.∀H:subgroup G. (x \sup -1 ·y) ∈ H → x*H = y*H. intros; -unfold left_coset_eq; simplify; intro; unfold member_of_subgroup in H1; @@ -263,40 +267,58 @@ exists; ]. qed. -(*theorem foo: - \forall G:Group. \forall x1,x2:G. \forall H:subgroup G. - x1*x2^-1 \nin H \to x1*H does_not_overlap x2*H - -theorem foo: - \forall x:G. \forall H:subgroup G. x \in x*H - -definition disjoinct - (T: Type) (n:nat) (S: \forall x:nat. x < n -> {S:Type * (S -> T)}) -:= - \forall i,j:nat. i < n \to j < n \to ... +theorem Not_member_of_subgroup_to_left_coset_disjoint: + ∀G.∀x,y.∀H:subgroup G.(x \sup -1 ·y) ∉ H → x*H ∥ y*H. +intros; +simplify; +unfold Not; +intros (x'); +apply H1; +unfold member_of_subgroup; +elim H2; +apply (ex_intro ? ? (x'·a \sup -1)); +rewrite > f_morph; +apply (eq_op_x_y_op_z_y_to_eq ? (a \sub H)); +rewrite > (op_associative ? G); +rewrite < H3; +rewrite > (op_associative ? G); +rewrite < f_morph; +rewrite > (inv_is_left_inverse ? H); +rewrite < (op_associative ? G); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_left_unit ? G); +rewrite < (f_morph ? ? H); +rewrite > (e_is_right_unit ? H); +reflexivity. +qed. +(*CSC: here the coercion Type_of_Group cannot be omitted. Why? *) +theorem in_x_mk_left_coset_x_H: + ∀G.∀x:Type_OF_Group G.∀H:subgroup G.x ∈ (x*H). +intros; +simplify; +apply (ex_intro ? ? 1); +rewrite > morphism_to_eq_f_1_1; +rewrite > (e_is_right_unit ? G); +reflexivity. +qed. -check - (λG.λH,H':left_coset G.λx:Type_of_Group (group ? (subgrp ? H)). (embed ? (subgrp ? H) x)). +(* Normal Subgroups *) -definition left_coset_eq ≝ - λG.λH,H':left_coset G. - ∀x:group ? (subgrp ? H). - ex (group ? (subgroup ? H')) (λy. - (element ? H)·(embed ? (subgrp ? H) x) = - (element ? H')·(embed ? (subgrp ? H') y)). - -(*record left_coset (G:Group) : Type ≝ - { subgroup: Group; - subgroup_is_subgroup: subgroup ≤ G; - element: G +record normal_subgroup (G:Group) : Type ≝ + { ns_subgroup:> subgroup G; + normal:> ∀x:G.∀y:ns_subgroup.(x·y \sub ns_subgroup·x \sup -1) ∈ ns_subgroup }. -definition left_coset_eq ≝ - λG.λH,H':left_coset G. - ∀x:subgroup ? H. - ex (subgroup ? H') (λy. - (element ? H)·(embed ? ? (subgroup_is_subgroup ? H) ˜ x) = - (element ? H')·(embed ? ? (subgroup_is_subgroup ? H') ˜ y)). +(*CSC: I have not defined yet right cosets +theorem foo: + ∀G.∀H:normal_subgroup G.∀x.x*H=H*x. *) +(* +theorem member_of_left_coset_mk_left_coset_x_H_a_to_member_of_left_coset_mk_left_coset_y_H_b_to_member_of_left_coset_mk_left_coset_op_x_y_H_op_a_b: + ∀G.∀H:normal_subgroup G.∀x,y,a,b. + a ∈ (x*H) → b ∈ (y*H) → (a·b) ∈ ((x·y)*H). +intros; +simplify; +qed. *)