X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Falgebra%2Fgroups.ma;h=f257951bc4a031abb0a1640ac0c673da3e6b340c;hb=0080faad4e730c227b6bbb2549407b23703b477a;hp=c83b3d2d0cc4359f982cf24cdcab9b869e72489f;hpb=9eabe046c1182960de8cfdba96c5414224e3a61e;p=helm.git diff --git a/helm/software/matita/library/algebra/groups.ma b/helm/software/matita/library/algebra/groups.ma index c83b3d2d0..f257951bc 100644 --- a/helm/software/matita/library/algebra/groups.ma +++ b/helm/software/matita/library/algebra/groups.ma @@ -33,11 +33,7 @@ record Group : Type ≝ group_properties:> isGroup pregroup }. -notation "hvbox(x \sup (-1))" with precedence 89 -for @{ 'ginv $x }. - -interpretation "Group inverse" 'ginv x = - (cic:/matita/algebra/groups/inv.con _ x). +interpretation "Group inverse" 'invert x = (inv _ x). definition left_cancellable ≝ λT:Type. λop: T -> T -> T. @@ -88,7 +84,7 @@ reflexivity. qed. theorem eq_opxy_e_to_eq_x_invy: - ∀G:Group. ∀x,y:G. x·y=1 → x=y \sup -1. + ∀G:Group. ∀x,y:G. x·y=ⅇ → x=y \sup -1. intros; apply (eq_op_x_y_op_z_y_to_eq ? y); rewrite > (inv_is_left_inverse ? G); @@ -96,7 +92,7 @@ assumption. qed. theorem eq_opxy_e_to_eq_invx_y: - ∀G:Group. ∀x,y:G. x·y=1 → x \sup -1=y. + ∀G:Group. ∀x,y:G. x·y=ⅇ → x \sup -1=y. intros; apply (eq_op_x_y_op_x_z_to_eq ? x); rewrite > (inv_is_right_inverse ? G); @@ -140,20 +136,14 @@ qed. (* Morphisms *) record morphism (G,G':Group) : Type ≝ - { image: G → G'; + { image:1> G → G'; f_morph: ∀x,y:G.image(x·y) = image x · image y }. -notation "hvbox(f˜ x)" with precedence 79 -for @{ 'morimage $f $x }. - -interpretation "Morphism image" 'morimage f x = - (cic:/matita/algebra/groups/image.con _ _ f x). - theorem morphism_to_eq_f_1_1: - ∀G,G'.∀f:morphism G G'.f˜1 = 1. + ∀G,G'.∀f:morphism G G'.f ⅇ = ⅇ. intros; -apply (eq_op_x_y_op_z_y_to_eq ? (f˜1)); +apply (eq_op_x_y_op_z_y_to_eq ? (f ⅇ)); rewrite > (e_is_left_unit ? G'); rewrite < f_morph; rewrite > (e_is_left_unit ? G); @@ -162,9 +152,9 @@ qed. theorem eq_image_inv_inv_image: ∀G,G'.∀f:morphism G G'. - ∀x.f˜(x \sup -1) = (f˜x) \sup -1. + ∀x.f (x \sup -1) = (f x) \sup -1. intros; -apply (eq_op_x_y_op_z_y_to_eq ? (f˜x)); +apply (eq_op_x_y_op_z_y_to_eq ? (f x)); rewrite > (inv_is_left_inverse ? G'); rewrite < f_morph; rewrite > (inv_is_left_inverse ? G); @@ -193,10 +183,10 @@ interpretation "Subgroup image" 'subgroupimage H x = definition member_of_subgroup ≝ λG.λH:subgroup G.λx:G.∃y.x=y \sub H. -notation "hvbox(x break ∈ H)" with precedence 79 +notation "hvbox(x break \in H)" with precedence 79 for @{ 'member_of $x $H }. -notation "hvbox(x break ∉ H)" with precedence 79 +notation "hvbox(x break \notin H)" with precedence 79 for @{ 'not_member_of $x $H }. interpretation "Member of subgroup" 'member_of x H = @@ -235,7 +225,7 @@ definition left_coset_disjoint ≝ λG.λC,C':left_coset G. ∀x.¬(((element ? C)·x \sub (subgrp ? C)) ∈ C'). -notation "hvbox(a break ∥ b)" +notation "hvbox(a break \par b)" non associative with precedence 45 for @{ 'disjoint $a $b }. @@ -297,7 +287,7 @@ theorem in_x_mk_left_coset_x_H: ∀G.∀x:Type_OF_Group G.∀H:subgroup G.x ∈ (x*H). intros; simplify; -apply (ex_intro ? ? 1); +apply (ex_intro ? ? ⅇ); rewrite > morphism_to_eq_f_1_1; rewrite > (e_is_right_unit ? G); reflexivity.