X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Falgebra%2Fgroups.ma;h=f72711aaab9d33880f00caf8b312d6a780e79121;hb=0137a346eaaf9ae7a0b23c7a3b4c6628073b7dfb;hp=1ef9249fc250fadc85781ebf0fff0cae2b0a41a9;hpb=ba4cfa6c2adc1f4f19be714dd7fde769d975104e;p=helm.git diff --git a/helm/software/matita/library/algebra/groups.ma b/helm/software/matita/library/algebra/groups.ma index 1ef9249fc..f72711aaa 100644 --- a/helm/software/matita/library/algebra/groups.ma +++ b/helm/software/matita/library/algebra/groups.ma @@ -12,8 +12,6 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/algebra/groups/". - include "algebra/monoids.ma". include "nat/le_arith.ma". include "datatypes/bool.ma". @@ -25,7 +23,7 @@ record PreGroup : Type ≝ }. record isGroup (G:PreGroup) : Prop ≝ - { is_monoid: isMonoid G; + { is_monoid:> isMonoid G; inv_is_left_inverse: is_left_inverse (mk_Monoid ? is_monoid) (inv G); inv_is_right_inverse: is_right_inverse (mk_Monoid ? is_monoid) (inv G) }. @@ -35,29 +33,7 @@ record Group : Type ≝ group_properties:> isGroup pregroup }. -(*notation < "G" -for @{ 'monoid $G }. - -interpretation "Monoid coercion" 'monoid G = - (cic:/matita/algebra/groups/monoid.con G).*) - -notation < "G" -for @{ 'type_of_group $G }. - -interpretation "Type_of_group coercion" 'type_of_group G = - (cic:/matita/algebra/groups/Type_of_Group.con G). - -notation < "G" -for @{ 'magma_of_group $G }. - -interpretation "magma_of_group coercion" 'magma_of_group G = - (cic:/matita/algebra/groups/Magma_of_Group.con G). - -notation "hvbox(x \sup (-1))" with precedence 89 -for @{ 'ginv $x }. - -interpretation "Group inverse" 'ginv x = - (cic:/matita/algebra/groups/inv.con _ x). +interpretation "Group inverse" 'invert x = (inv _ x). definition left_cancellable ≝ λT:Type. λop: T -> T -> T. @@ -73,11 +49,11 @@ intros; unfold left_cancellable; unfold injective; intros (x y z); -rewrite < (e_is_left_unit ? (is_monoid ? G)); -rewrite < (e_is_left_unit ? (is_monoid ? G) z); +rewrite < (e_is_left_unit ? G); +rewrite < (e_is_left_unit ? G z); rewrite < (inv_is_left_inverse ? G x); -rewrite > (associative ? (is_semi_group ? (is_monoid ? G))); -rewrite > (associative ? (is_semi_group ? (is_monoid ? G))); +rewrite > (op_associative ? G); +rewrite > (op_associative ? G); apply eq_f; assumption. qed. @@ -90,16 +66,16 @@ unfold right_cancellable; unfold injective; simplify;fold simplify (op G); intros (x y z); -rewrite < (e_is_right_unit ? (is_monoid ? G)); -rewrite < (e_is_right_unit ? (is_monoid ? G) z); +rewrite < (e_is_right_unit ? G); +rewrite < (e_is_right_unit ? G z); rewrite < (inv_is_right_inverse ? G x); -rewrite < (associative ? (is_semi_group ? (is_monoid ? G))); -rewrite < (associative ? (is_semi_group ? (is_monoid ? G))); +rewrite < (op_associative ? G); +rewrite < (op_associative ? G); rewrite > H; reflexivity. qed. -theorem inv_inv: ∀G:Group. ∀x:G. x \sup -1 \sup -1 = x. +theorem eq_inv_inv_x_x: ∀G:Group. ∀x:G. x \sup -1 \sup -1 = x. intros; apply (eq_op_x_y_op_z_y_to_eq ? (x \sup -1)); rewrite > (inv_is_right_inverse ? G); @@ -108,7 +84,7 @@ reflexivity. qed. theorem eq_opxy_e_to_eq_x_invy: - ∀G:Group. ∀x,y:G. x·y=1 → x=y \sup -1. + ∀G:Group. ∀x,y:G. x·y=ⅇ → x=y \sup -1. intros; apply (eq_op_x_y_op_z_y_to_eq ? y); rewrite > (inv_is_left_inverse ? G); @@ -116,7 +92,7 @@ assumption. qed. theorem eq_opxy_e_to_eq_invx_y: - ∀G:Group. ∀x,y:G. x·y=1 → x \sup -1=y. + ∀G:Group. ∀x,y:G. x·y=ⅇ → x \sup -1=y. intros; apply (eq_op_x_y_op_x_z_to_eq ? x); rewrite > (inv_is_right_inverse ? G); @@ -128,9 +104,9 @@ theorem eq_opxy_z_to_eq_x_opzinvy: ∀G:Group. ∀x,y,z:G. x·y=z → x = z·y \sup -1. intros; apply (eq_op_x_y_op_z_y_to_eq ? y); -rewrite > (associative ? (is_semi_group ? (is_monoid ? G))); +rewrite > (op_associative ? G); rewrite > (inv_is_left_inverse ? G); -rewrite > (e_is_right_unit ? (is_monoid ? G)); +rewrite > (e_is_right_unit ? G); assumption. qed. @@ -138,8 +114,198 @@ theorem eq_opxy_z_to_eq_y_opinvxz: ∀G:Group. ∀x,y,z:G. x·y=z → y = x \sup -1·z. intros; apply (eq_op_x_y_op_x_z_to_eq ? x); -rewrite < (associative ? (is_semi_group ? (is_monoid ? G))); +rewrite < (op_associative ? G); rewrite > (inv_is_right_inverse ? G); -rewrite > (e_is_left_unit ? (is_monoid ? G)); +rewrite > (e_is_left_unit ? G); assumption. -qed. \ No newline at end of file +qed. + +theorem eq_inv_op_x_y_op_inv_y_inv_x: + ∀G:Group. ∀x,y:G. (x·y) \sup -1 = y \sup -1 · x \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (x·y)); +rewrite > (inv_is_left_inverse ? G); +rewrite < (op_associative ? G); +rewrite > (op_associative ? G (y \sup -1)); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_right_unit ? G); +rewrite > (inv_is_left_inverse ? G); +reflexivity. +qed. + +(* Morphisms *) + +record morphism (G,G':Group) : Type ≝ + { image:1> G → G'; + f_morph: ∀x,y:G.image(x·y) = image x · image y + }. + +theorem morphism_to_eq_f_1_1: + ∀G,G'.∀f:morphism G G'.f ⅇ = ⅇ. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (f ⅇ)); +rewrite > (e_is_left_unit ? G'); +rewrite < f_morph; +rewrite > (e_is_left_unit ? G); +reflexivity. +qed. + +theorem eq_image_inv_inv_image: + ∀G,G'.∀f:morphism G G'. + ∀x.f (x \sup -1) = (f x) \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (f x)); +rewrite > (inv_is_left_inverse ? G'); +rewrite < f_morph; +rewrite > (inv_is_left_inverse ? G); +apply (morphism_to_eq_f_1_1 ? ? f). +qed. + +record monomorphism (G,G':Group) : Type ≝ + { morphism:> morphism G G'; + injective: injective ? ? (image ? ? morphism) + }. + +(* Subgroups *) + +record subgroup (G:Group) : Type ≝ + { group:> Group; + embed:> monomorphism group G + }. + +notation "hvbox(x \sub H)" with precedence 79 +for @{ 'subgroupimage $H $x }. + +interpretation "Subgroup image" 'subgroupimage H x = + (image _ _ (morphism_OF_subgroup _ H) x). + +definition member_of_subgroup ≝ + λG.λH:subgroup G.λx:G.∃y.x=y \sub H. + +notation "hvbox(x break \in H)" with precedence 79 +for @{ 'member_of $x $H }. + +notation "hvbox(x break \notin H)" with precedence 79 +for @{ 'not_member_of $x $H }. + +interpretation "Member of subgroup" 'member_of x H = + (member_of_subgroup _ H x). + +interpretation "Not member of subgroup" 'not_member_of x H = + (Not (member_of_subgroup _ H x)). + +(* Left cosets *) + +record left_coset (G:Group) : Type ≝ + { element: G; + subgrp: subgroup G + }. + +(* Here I would prefer 'magma_op, but this breaks something in the next definition *) +interpretation "Left_coset" 'times x C = + (mk_left_coset _ x C). + +definition member_of_left_coset ≝ + λG:Group.λC:left_coset G.λx:G. + ∃y.x=(element ? C)·y \sub (subgrp ? C). + +interpretation "Member of left_coset" 'member_of x C = + (member_of_left_coset _ C x). + +definition left_coset_eq ≝ + λG.λC,C':left_coset G. + ∀x.((element ? C)·x \sub (subgrp ? C)) ∈ C'. + +interpretation "Left cosets equality" 'eq t C C' = (left_coset_eq t C C'). + +definition left_coset_disjoint ≝ + λG.λC,C':left_coset G. + ∀x.¬(((element ? C)·x \sub (subgrp ? C)) ∈ C'). + +notation "hvbox(a break \par b)" + non associative with precedence 45 +for @{ 'disjoint $a $b }. + +interpretation "Left cosets disjoint" 'disjoint C C' = + (left_coset_disjoint _ C C'). + +(* The following should be a one-shot alias! *) +alias symbol "member_of" (instance 0) = "Member of subgroup". +theorem member_of_subgroup_op_inv_x_y_to_left_coset_eq: + ∀G.∀x,y.∀H:subgroup G. (x \sup -1 ·y) ∈ H → x*H = y*H. +intros; +simplify; +intro; +unfold member_of_subgroup in H1; +elim H1; +clear H1; +exists; +[ apply (a\sup-1 · x1) +| rewrite > f_morph; + rewrite > eq_image_inv_inv_image; + rewrite < H2; + rewrite > eq_inv_op_x_y_op_inv_y_inv_x; + rewrite > eq_inv_inv_x_x; + rewrite < (op_associative ? G); + rewrite < (op_associative ? G); + rewrite > (inv_is_right_inverse ? G); + rewrite > (e_is_left_unit ? G); + reflexivity +]. +qed. + +theorem Not_member_of_subgroup_to_left_coset_disjoint: + ∀G.∀x,y.∀H:subgroup G.(x \sup -1 ·y) ∉ H → x*H ∥ y*H. +intros; +simplify; +unfold Not; +intros (x'); +apply H1; +unfold member_of_subgroup; +elim H2; +apply (ex_intro ? ? (x'·a \sup -1)); +rewrite > f_morph; +apply (eq_op_x_y_op_z_y_to_eq ? (a \sub H)); +rewrite > (op_associative ? G); +rewrite < H3; +rewrite > (op_associative ? G); +rewrite < f_morph; +rewrite > (inv_is_left_inverse ? H); +rewrite < (op_associative ? G); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_left_unit ? G); +rewrite < (f_morph ? ? H); +rewrite > (e_is_right_unit ? H); +reflexivity. +qed. + +(*CSC: here the coercion Type_of_Group cannot be omitted. Why? *) +theorem in_x_mk_left_coset_x_H: + ∀G.∀x:Type_OF_Group G.∀H:subgroup G.x ∈ (x*H). +intros; +simplify; +apply (ex_intro ? ? ⅇ); +rewrite > morphism_to_eq_f_1_1; +rewrite > (e_is_right_unit ? G); +reflexivity. +qed. + +(* Normal Subgroups *) + +record normal_subgroup (G:Group) : Type ≝ + { ns_subgroup:> subgroup G; + normal:> ∀x:G.∀y:ns_subgroup.(x·y \sub ns_subgroup·x \sup -1) ∈ ns_subgroup + }. + +(*CSC: I have not defined yet right cosets +theorem foo: + ∀G.∀H:normal_subgroup G.∀x.x*H=H*x. +*) +(* +theorem member_of_left_coset_mk_left_coset_x_H_a_to_member_of_left_coset_mk_left_coset_y_H_b_to_member_of_left_coset_mk_left_coset_op_x_y_H_op_a_b: + ∀G.∀H:normal_subgroup G.∀x,y,a,b. + a ∈ (x*H) → b ∈ (y*H) → (a·b) ∈ ((x·y)*H). +intros; +simplify; +qed. +*)