X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Falgebra%2Fgroups.ma;h=fd08a95dacb504e2cee3bfdf1a06948175c993f7;hb=647b419e96770d90a82d7a9e5e8843566a9f93ee;hp=1301d34f923725ea583d1ea4fe47403e869fa33c;hpb=93422dfbcbf88ad0a7d3cac7ec79def2ff2a6b30;p=helm.git diff --git a/helm/software/matita/library/algebra/groups.ma b/helm/software/matita/library/algebra/groups.ma index 1301d34f9..fd08a95da 100644 --- a/helm/software/matita/library/algebra/groups.ma +++ b/helm/software/matita/library/algebra/groups.ma @@ -12,52 +12,33 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/algebra/groups/". - include "algebra/monoids.ma". include "nat/le_arith.ma". include "datatypes/bool.ma". include "nat/compare.ma". record PreGroup : Type ≝ - { premonoid:> PreMonoid; - inv: premonoid -> premonoid + { pre_monoid:> PreMonoid; + inv: pre_monoid -> pre_monoid }. +interpretation "Group inverse" 'invert x = (inv ? x). + record isGroup (G:PreGroup) : Prop ≝ - { is_monoid:> isMonoid G; - inv_is_left_inverse: is_left_inverse (mk_Monoid ? is_monoid) (inv G); - inv_is_right_inverse: is_right_inverse (mk_Monoid ? is_monoid) (inv G) + { is_monoid :> IsMonoid G; + inv_is_left_inverse : is_left_inverse G (inv G); + inv_is_right_inverse: is_right_inverse G (inv G) }. - + record Group : Type ≝ - { pregroup:> PreGroup; - group_properties:> isGroup pregroup + { pre_group:> PreGroup; + is_group:> isGroup pre_group }. -(*notation < "G" -for @{ 'monoid $G }. - -interpretation "Monoid coercion" 'monoid G = - (cic:/matita/algebra/groups/monoid.con G).*) - -notation < "G" -for @{ 'type_of_group $G }. - -interpretation "Type_of_group coercion" 'type_of_group G = - (cic:/matita/algebra/groups/Type_of_Group.con G). - -notation < "G" -for @{ 'magma_of_group $G }. - -interpretation "magma_of_group coercion" 'magma_of_group G = - (cic:/matita/algebra/groups/Magma_of_Group.con G). - -notation "hvbox(x \sup (-1))" with precedence 89 -for @{ 'ginv $x }. +definition Monoid_of_Group: Group → Monoid ≝ + λG. mk_Monoid ? (is_group G). -interpretation "Group inverse" 'ginv x = - (cic:/matita/algebra/groups/inv.con _ x). +coercion Monoid_of_Group nocomposites. definition left_cancellable ≝ λT:Type. λop: T -> T -> T. @@ -76,30 +57,28 @@ intros (x y z); rewrite < (e_is_left_unit ? G); rewrite < (e_is_left_unit ? G z); rewrite < (inv_is_left_inverse ? G x); -rewrite > (associative ? (is_semi_group ? ( G))); -rewrite > (associative ? (is_semi_group ? ( G))); +rewrite > (op_is_associative ? G); +rewrite > (op_is_associative ? G); apply eq_f; assumption. qed. - theorem eq_op_x_y_op_z_y_to_eq: ∀G:Group. right_cancellable G (op G). intros; unfold right_cancellable; unfold injective; -simplify;fold simplify (op G); intros (x y z); -rewrite < (e_is_right_unit ? ( G)); -rewrite < (e_is_right_unit ? ( G) z); +rewrite < (e_is_right_unit ? G); +rewrite < (e_is_right_unit ? G z); rewrite < (inv_is_right_inverse ? G x); -rewrite < (associative ? (is_semi_group ? ( G))); -rewrite < (associative ? (is_semi_group ? ( G))); +rewrite < (op_is_associative ? G); +rewrite < (op_is_associative ? G); rewrite > H; reflexivity. qed. -theorem inv_inv: ∀G:Group. ∀x:G. x \sup -1 \sup -1 = x. +theorem eq_inv_inv_x_x: ∀G:Group. ∀x:G. x \sup -1 \sup -1 = x. intros; apply (eq_op_x_y_op_z_y_to_eq ? (x \sup -1)); rewrite > (inv_is_right_inverse ? G); @@ -108,7 +87,7 @@ reflexivity. qed. theorem eq_opxy_e_to_eq_x_invy: - ∀G:Group. ∀x,y:G. x·y=1 → x=y \sup -1. + ∀G:Group. ∀x,y:G. x·y=ⅇ → x=y \sup -1. intros; apply (eq_op_x_y_op_z_y_to_eq ? y); rewrite > (inv_is_left_inverse ? G); @@ -116,7 +95,7 @@ assumption. qed. theorem eq_opxy_e_to_eq_invx_y: - ∀G:Group. ∀x,y:G. x·y=1 → x \sup -1=y. + ∀G:Group. ∀x,y:G. x·y=ⅇ → x \sup -1=y. intros; apply (eq_op_x_y_op_x_z_to_eq ? x); rewrite > (inv_is_right_inverse ? G); @@ -128,7 +107,7 @@ theorem eq_opxy_z_to_eq_x_opzinvy: ∀G:Group. ∀x,y,z:G. x·y=z → x = z·y \sup -1. intros; apply (eq_op_x_y_op_z_y_to_eq ? y); -rewrite > (associative ? G); +rewrite > (op_is_associative ? G); rewrite > (inv_is_left_inverse ? G); rewrite > (e_is_right_unit ? G); assumption. @@ -138,9 +117,9 @@ theorem eq_opxy_z_to_eq_y_opinvxz: ∀G:Group. ∀x,y,z:G. x·y=z → y = x \sup -1·z. intros; apply (eq_op_x_y_op_x_z_to_eq ? x); -rewrite < (associative ? G); +rewrite < (op_is_associative ? G); rewrite > (inv_is_right_inverse ? G); -rewrite > (e_is_left_unit ? (is_monoid ? G)); +rewrite > (e_is_left_unit ? G); assumption. qed. @@ -149,8 +128,8 @@ theorem eq_inv_op_x_y_op_inv_y_inv_x: intros; apply (eq_op_x_y_op_z_y_to_eq ? (x·y)); rewrite > (inv_is_left_inverse ? G); -rewrite < (associative ? G); -rewrite > (associative ? G (y \sup -1)); +rewrite < (op_is_associative ? G); +rewrite > (op_is_associative ? G (y \sup -1)); rewrite > (inv_is_left_inverse ? G); rewrite > (e_is_right_unit ? G); rewrite > (inv_is_left_inverse ? G); @@ -160,33 +139,27 @@ qed. (* Morphisms *) record morphism (G,G':Group) : Type ≝ - { image: G → G'; + { image:1> G → G'; f_morph: ∀x,y:G.image(x·y) = image x · image y }. -notation "hvbox(f˜ x)" with precedence 79 -for @{ 'morimage $f $x }. - -interpretation "Morphism image" 'morimage f x = - (cic:/matita/algebra/groups/image.con _ _ f x). - theorem morphism_to_eq_f_1_1: - ∀G,G'.∀f:morphism G G'.f˜1 = 1. + ∀G,G'.∀f:morphism G G'.f ⅇ = ⅇ. intros; -apply (eq_op_x_y_op_z_y_to_eq G' (f˜1)); -rewrite > (e_is_left_unit ? G' ?); -rewrite < (f_morph ? ? f); +apply (eq_op_x_y_op_z_y_to_eq ? (f ⅇ)); +rewrite > (e_is_left_unit ? G'); +rewrite < f_morph; rewrite > (e_is_left_unit ? G); reflexivity. qed. theorem eq_image_inv_inv_image: ∀G,G'.∀f:morphism G G'. - ∀x.f˜(x \sup -1) = (f˜x) \sup -1. + ∀x.f (x \sup -1) = (f x) \sup -1. intros; -apply (eq_op_x_y_op_z_y_to_eq G' (f˜x)); +apply (eq_op_x_y_op_z_y_to_eq ? (f x)); rewrite > (inv_is_left_inverse ? G'); -rewrite < (f_morph ? ? f); +rewrite < f_morph; rewrite > (inv_is_left_inverse ? G); apply (morphism_to_eq_f_1_1 ? ? f). qed. @@ -199,25 +172,30 @@ record monomorphism (G,G':Group) : Type ≝ (* Subgroups *) record subgroup (G:Group) : Type ≝ - { group: Group; + { group:> Group; embed:> monomorphism group G }. - + notation "hvbox(x \sub H)" with precedence 79 for @{ 'subgroupimage $H $x }. interpretation "Subgroup image" 'subgroupimage H x = - (cic:/matita/algebra/groups/image.con _ _ - (cic:/matita/algebra/groups/morphism_of_subgroup.con _ H) x). + (image ?? (morphism_OF_subgroup ? H) x). definition member_of_subgroup ≝ λG.λH:subgroup G.λx:G.∃y.x=y \sub H. -notation "hvbox(x break ∈ H)" with precedence 79 +notation "hvbox(x break \in H)" with precedence 79 for @{ 'member_of $x $H }. +notation "hvbox(x break \notin H)" with precedence 79 +for @{ 'not_member_of $x $H }. + interpretation "Member of subgroup" 'member_of x H = - (cic:/matita/algebra/groups/member_of_subgroup.con _ H x). + (member_of_subgroup ? H x). + +interpretation "Not member of subgroup" 'not_member_of x H = + (Not (member_of_subgroup ? H x)). (* Left cosets *) @@ -228,93 +206,109 @@ record left_coset (G:Group) : Type ≝ (* Here I would prefer 'magma_op, but this breaks something in the next definition *) interpretation "Left_coset" 'times x C = - (cic:/matita/algebra/groups/left_coset.ind#xpointer(1/1/1) _ x C). + (mk_left_coset ? x C). definition member_of_left_coset ≝ λG:Group.λC:left_coset G.λx:G. ∃y.x=(element ? C)·y \sub (subgrp ? C). interpretation "Member of left_coset" 'member_of x C = - (cic:/matita/algebra/groups/member_of_left_coset.con _ C x). + (member_of_left_coset ? C x). definition left_coset_eq ≝ λG.λC,C':left_coset G. ∀x.((element ? C)·x \sub (subgrp ? C)) ∈ C'. -interpretation "Left cosets equality" 'eq C C' = - (cic:/matita/algebra/groups/left_coset_eq.con _ C C'). +interpretation "Left cosets equality" 'eq t C C' = (left_coset_eq t C C'). definition left_coset_disjoint ≝ λG.λC,C':left_coset G. ∀x.¬(((element ? C)·x \sub (subgrp ? C)) ∈ C'). -notation "hvbox(a break ∥ b)" +notation "hvbox(a break \par b)" non associative with precedence 45 for @{ 'disjoint $a $b }. interpretation "Left cosets disjoint" 'disjoint C C' = - (cic:/matita/algebra/groups/left_coset_disjoint.con _ C C'). + (left_coset_disjoint ? C C'). (* The following should be a one-shot alias! *) alias symbol "member_of" (instance 0) = "Member of subgroup". theorem member_of_subgroup_op_inv_x_y_to_left_coset_eq: ∀G.∀x,y.∀H:subgroup G. (x \sup -1 ·y) ∈ H → x*H = y*H. intros; -unfold left_coset_eq; -simplify in ⊢ (? → ? ? ? (? ? % ?)); -simplify in ⊢ (? → ? ? ? (? ? ? (? ? ? (? ? %) ?))); -simplify in ⊢ (? % → ?); -intros; -unfold member_of_left_coset; -simplify in ⊢ (? ? (λy:?.? ? ? (? ? ? (? ? ? (? ? %) ?)))); -simplify in ⊢ (? ? (λy:? %.?)); -simplify in ⊢ (? ? (λy:?.? ? ? (? ? % ?))); +simplify; +intro; unfold member_of_subgroup in H1; elim H1; clear H1; exists; [ apply (a\sup-1 · x1) -| rewrite > (f_morph ? ? (morphism ? ? H)); - rewrite > (eq_image_inv_inv_image ? ? +| rewrite > f_morph; + rewrite > eq_image_inv_inv_image; rewrite < H2; - rewrite > (eq_inv_op_x_y_op_inv_y_inv_x ? ? ? ? H2); + rewrite > eq_inv_op_x_y_op_inv_y_inv_x; + rewrite > eq_inv_inv_x_x; + rewrite < (op_is_associative ? G); + rewrite < (op_is_associative ? G); + rewrite > (inv_is_right_inverse ? G); + rewrite > (e_is_left_unit ? G); + reflexivity ]. qed. -(*theorem foo: - \forall G:Group. \forall x1,x2:G. \forall H:subgroup G. - x1*x2^-1 \nin H \to x1*H does_not_overlap x2*H - -theorem foo: - \forall x:G. \forall H:subgroup G. x \in x*H - -definition disjoinct - (T: Type) (n:nat) (S: \forall x:nat. x < n -> {S:Type * (S -> T)}) -:= - \forall i,j:nat. i < n \to j < n \to ... +theorem Not_member_of_subgroup_to_left_coset_disjoint: + ∀G.∀x,y.∀H:subgroup G.(x \sup -1 ·y) ∉ H → x*H ∥ y*H. +intros; +simplify; +unfold Not; +intros (x'); +apply H1; +unfold member_of_subgroup; +elim H2; +apply (ex_intro ? ? (x'·a \sup -1)); +rewrite > f_morph; +apply (eq_op_x_y_op_z_y_to_eq ? (a \sub H)); +rewrite > (op_is_associative ? G); +rewrite < H3; +rewrite > (op_is_associative ? G); +rewrite < f_morph; +rewrite > (inv_is_left_inverse ? H); +rewrite < (op_is_associative ? G); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_left_unit ? G); +rewrite < (f_morph ? ? H); +rewrite > (e_is_right_unit ? H); +reflexivity. +qed. +(*CSC: here the coercion Type_of_Group cannot be omitted. Why? *) +theorem in_x_mk_left_coset_x_H: + ∀G.∀x:Type_OF_Group G.∀H:subgroup G.x ∈ (x*H). +intros; +simplify; +apply (ex_intro ? ? ⅇ); +rewrite > morphism_to_eq_f_1_1; +rewrite > (e_is_right_unit ? G); +reflexivity. +qed. -check - (λG.λH,H':left_coset G.λx:Type_of_Group (group ? (subgrp ? H)). (embed ? (subgrp ? H) x)). +(* Normal Subgroups *) -definition left_coset_eq ≝ - λG.λH,H':left_coset G. - ∀x:group ? (subgrp ? H). - ex (group ? (subgroup ? H')) (λy. - (element ? H)·(embed ? (subgrp ? H) x) = - (element ? H')·(embed ? (subgrp ? H') y)). - -(*record left_coset (G:Group) : Type ≝ - { subgroup: Group; - subgroup_is_subgroup: subgroup ≤ G; - element: G +record normal_subgroup (G:Group) : Type ≝ + { ns_subgroup:> subgroup G; + normal:> ∀x:G.∀y:ns_subgroup.(x·y \sub ns_subgroup·x \sup -1) ∈ ns_subgroup }. -definition left_coset_eq ≝ - λG.λH,H':left_coset G. - ∀x:subgroup ? H. - ex (subgroup ? H') (λy. - (element ? H)·(embed ? ? (subgroup_is_subgroup ? H) ˜ x) = - (element ? H')·(embed ? ? (subgroup_is_subgroup ? H') ˜ y)). +(*CSC: I have not defined yet right cosets +theorem foo: + ∀G.∀H:normal_subgroup G.∀x.x*H=H*x. *) +(* +theorem member_of_left_coset_mk_left_coset_x_H_a_to_member_of_left_coset_mk_left_coset_y_H_b_to_member_of_left_coset_mk_left_coset_op_x_y_H_op_a_b: + ∀G.∀H:normal_subgroup G.∀x,y,a,b. + a ∈ (x*H) → b ∈ (y*H) → (a·b) ∈ ((x·y)*H). +intros; +simplify; +qed. *)