X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fdama%2Funiform.ma;h=d6637a85db89416896072733424d9c95bfa2c328;hb=e880d6eab5e1700f4a625ddcd7d0fa8f0cce2dcc;hp=759037124310076d813c711ea272eb323d2d6ffc;hpb=6fbeff97e37927fd95b3aee3eb23b4309fc465c4;p=helm.git diff --git a/helm/software/matita/library/dama/uniform.ma b/helm/software/matita/library/dama/uniform.ma index 759037124..d6637a85d 100644 --- a/helm/software/matita/library/dama/uniform.ma +++ b/helm/software/matita/library/dama/uniform.ma @@ -12,7 +12,7 @@ (* *) (**************************************************************************) -include "supremum.ma". +include "dama/supremum.ma". (* Definition 2.13 *) alias symbol "pair" = "Pair construction". @@ -26,17 +26,17 @@ definition compose_os_relations ≝ λC:ordered_set.λU,V:C squareB → Prop. λx:C squareB.∃y:C. U 〈\fst x,y〉 ∧ V 〈y,\snd x〉. -interpretation "bishop set relations composition" 'compose a b = (compose_bs_relations _ a b). -interpretation "ordered set relations composition" 'compose a b = (compose_os_relations _ a b). +interpretation "bishop set relations composition" 'compose a b = (compose_bs_relations ? a b). +interpretation "ordered set relations composition" 'compose a b = (compose_os_relations ? a b). definition invert_bs_relation ≝ λC:bishop_set.λU:C squareB → Prop. λx:C squareB. U 〈\snd x,\fst x〉. notation > "\inv" with precedence 60 for @{ 'invert_symbol }. -interpretation "relation invertion" 'invert a = (invert_bs_relation _ a). -interpretation "relation invertion" 'invert_symbol = (invert_bs_relation _). -interpretation "relation invertion" 'invert_appl a x = (invert_bs_relation _ a x). +interpretation "relation invertion" 'invert a = (invert_bs_relation ? a). +interpretation "relation invertion" 'invert_symbol = (invert_bs_relation ?). +interpretation "relation invertion" 'invert_appl a x = (invert_bs_relation ? a x). alias symbol "exists" = "CProp exists". alias symbol "compose" = "bishop set relations composition". @@ -65,7 +65,7 @@ notation < "a \nbsp 'is_cauchy'" non associative with precedence 45 for @{'cauchy $a}. notation > "a 'is_cauchy'" non associative with precedence 45 for @{'cauchy $a}. -interpretation "Cauchy sequence" 'cauchy s = (cauchy _ s). +interpretation "Cauchy sequence" 'cauchy s = (cauchy ? s). (* Definition 2.15 *) definition uniform_converge ≝ @@ -77,7 +77,7 @@ notation < "a \nbsp (\u \atop (\horbar\triangleright)) \nbsp x" non associative notation > "a 'uniform_converges' x" non associative with precedence 45 for @{'uniform_converge $a $x}. interpretation "Uniform convergence" 'uniform_converge s u = - (uniform_converge _ s u). + (uniform_converge ? s u). (* Lemma 2.16 *) lemma uniform_converge_is_cauchy :