X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fdecidable_kit%2Ffintype.ma;h=e44b641977e2503d15308fcf4b6dd61b95ed2374;hb=5c10d402b5de7233bc83d7f685b274832e383212;hp=ad71a4511dd6d7583a5de136dd5b39dd3ffd1287;hpb=32d8d8d419e0b910435da275361bb55d49bc43a9;p=helm.git diff --git a/helm/software/matita/library/decidable_kit/fintype.ma b/helm/software/matita/library/decidable_kit/fintype.ma index ad71a4511..e44b64197 100644 --- a/helm/software/matita/library/decidable_kit/fintype.ma +++ b/helm/software/matita/library/decidable_kit/fintype.ma @@ -12,8 +12,6 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/decidable_kit/fintype/". - include "decidable_kit/eqtype.ma". include "decidable_kit/list_aux.ma". @@ -51,13 +49,13 @@ lemma mem_filter : mem d2 x (filter d1 d2 p l) = false. intros 5 (d1 d2 x l p); elim l; simplify; [reflexivity] -generalize in match (refl_eq ? (p t)); -generalize in match (p t) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b; intros (Hpt); +generalize in match (refl_eq ? (p a)); +generalize in match (p a) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b; intros (Hpt); [1: apply H; intros (y Hyl); apply H1; simplify; rewrite > Hyl; rewrite > orbC; reflexivity; |2: simplify; apply (cmpP d2 x s); simplify; intros (E); - [1: rewrite < (H1 t); simplify; [rewrite > Hpt; rewrite > E] + [1: rewrite < (H1 a); simplify; [rewrite > Hpt; rewrite > E] simplify; rewrite > cmp_refl; reflexivity |2: apply H; intros; apply H1; simplify; rewrite > H2; rewrite > orbC; reflexivity]] @@ -67,12 +65,12 @@ lemma count_O : ∀d:eqType.∀p:d→bool.∀l:list d. (∀x:d.mem d x l = true → notb (p x) = true) → count d p l = O. intros 3 (d p l); elim l; simplify; [1: reflexivity] -generalize in match (refl_eq ? (p t)); -generalize in match (p t) in ⊢ (? ? ? % → %); intros 1 (b); +generalize in match (refl_eq ? (p a)); +generalize in match (p a) in ⊢ (? ? ? % → %); intros 1 (b); cases b; simplify; [2:intros (Hpt); apply H; intros; apply H1; simplify; - apply (cmpP d x t); [2: rewrite > H2;]; intros; reflexivity; -|1:intros (H2); lapply (H1 t); [2:simplify; rewrite > cmp_refl; simplify; autobatch] + apply (cmpP d x a); [2: rewrite > H2;]; intros; reflexivity; +|1:intros (H2); lapply (H1 a); [2:simplify; rewrite > cmp_refl; simplify; autobatch] rewrite > H2 in Hletin; simplify in Hletin; destruct Hletin] qed. @@ -84,12 +82,14 @@ cut (∀x:fsort. count fsort (cmp fsort x) enum = (S O)); [ apply (mk_finType fsort enum Hcut) | intros (x); cases x (n Hn); simplify in Hn; clear x; generalize in match Hn; generalize in match Hn; clear Hn; + unfold enum; unfold segment_enum; generalize in match bound in ⊢ (% → ? → ? ? (? ? ? (? ? ? ? %)) ?); - intros 1 (m); elim m (Hm Hn p IH Hm Hn); [ destruct Hm ] + intros 1 (m); elim m (Hm Hn p IH Hm Hn); [ simplify in Hm; destruct Hm ] simplify; cases (eqP bool_eqType (ltb p bound) true); simplify; - [1:unfold segment in ⊢ (? ? match ? % ? ? with [true⇒ ?|false⇒ ?] ?); - unfold nat_eqType in ⊢ (? ? match % with [true⇒ ?|false⇒ ?] ?); + [1:unfold fsort; + unfold segment in ⊢ (? ? match ? % ? ? with [_ ⇒ ?|_ ⇒ ?] ?); + unfold nat_eqType in ⊢ (? ? match % with [_ ⇒ ?|_ ⇒ ?] ?); simplify; apply (cmpP nat_eqType n p); intros (Enp); simplify; [2:rewrite > IH; [1,3: autobatch] rewrite < ltb_n_Sm in Hm; rewrite > Enp in Hm; @@ -104,8 +104,8 @@ cut (∀x:fsort. count fsort (cmp fsort x) enum = (S O)); fold simplify (sort nat_eqType); (* CANONICAL?! *) cases (in_sub_eq nat_eqType (λx:nat_eqType.ltb x bound) w); simplify; [2: reflexivity] - generalize in match H1; clear H1; cases s; clear s; intros (H1); - unfold segment; simplify; simplify in H1; rewrite > H1; + generalize in match H1; clear H1; cases s (r Pr); clear s; intros (H1); + unfold fsort; unfold segment; simplify; simplify in H1; rewrite > H1; rewrite > iota_ltb in Hw; apply (p2bF ? ? (eqP nat_eqType ? ?)); unfold Not; intros (Enw); rewrite > Enw in Hw; rewrite > ltb_refl in Hw; destruct Hw] @@ -135,50 +135,50 @@ intros; cases a; cases b; reflexivity; qed. lemma uniq_tail : ∀d:eqType.∀x:d.∀l:list d. uniq d (x::l) = andb (negb (mem d x l)) (uniq d l). intros (d x l); elim l; simplify; [reflexivity] -apply (cmpP d x t); intros (E); simplify ; rewrite > E; [reflexivity] +apply (cmpP d x a); intros (E); simplify ; try rewrite > E; [reflexivity] rewrite > andbA; rewrite > andbC in ⊢ (? ? (? % ?) ?); rewrite < andbA; rewrite < H; rewrite > andbC in ⊢ (? ? ? (? % ?)); rewrite < andbA; reflexivity; qed. lemma count_O_mem : ∀d:eqType.∀x:d.∀l:list d.ltb O (count d (cmp d x) l) = mem d x l. -intros 3 (d x l); elim l [reflexivity] simplify; rewrite < H; cases (cmp d x t); +intros 3 (d x l); elim l [reflexivity] simplify; rewrite < H; cases (cmp d x a); reflexivity; qed. lemma uniqP : ∀d:eqType.∀l:list d. reflect (∀x:d.mem d x l = true → count d (cmp d x) l = (S O)) (uniq d l). -intros (d l); apply prove_reflect; elim l; [1: destruct H1 | 3: destruct H] +intros (d l); apply prove_reflect; elim l; [1: simplify in H1; destruct H1 | 3: simplify in H; destruct H] [1: generalize in match H2; simplify in H2; lapply (b2pT ? ? (orbP ? ?) H2) as H3; clear H2; cases H3; clear H3; intros; - [2: lapply (uniq_mem ? ? ? H1) as H4; simplify; apply (cmpP d x t); + [2: lapply (uniq_mem ? ? ? H1) as H4; simplify; apply (cmpP d x a); intros (H5); simplify; [1: rewrite > count_O; [reflexivity] - intros (y Hy); rewrite > H5 in H2 H3 H4 ⊢ %; clear H5; clear x; + intros (y Hy); rewrite > H5 in H2 H3 ⊢ %; clear H5; clear x; rewrite > H2 in H4; destruct H4; - |2: simplify; rewrite > H5; simplify; apply H; + |2: simplify; apply H; rewrite > uniq_tail in H1; cases (b2pT ? ? (andbP ? ?) H1); assumption;] |1: simplify; rewrite > H2; simplify; rewrite > count_O; [reflexivity] intros (y Hy); rewrite > (b2pT ? ? (eqP d ? ?) H2) in H3 ⊢ %; clear H2; clear x; lapply (uniq_mem ? ? ? H1) as H4; - apply (cmpP d t y); intros (E); [2: reflexivity]. + apply (cmpP d a y); intros (E); [2: reflexivity]. rewrite > E in H4; rewrite > H4 in Hy; destruct Hy;] |2: rewrite > uniq_tail in H1; generalize in match (refl_eq ? (uniq d l1)); generalize in match (uniq d l1) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b; [1: intros (E); rewrite > E in H1; rewrite > andbC in H1; simplify in H1; - unfold Not; intros (A); lapply (A t) as A'; + unfold Not; intros (A); lapply (A a) as A'; [1: simplify in A'; rewrite > cmp_refl in A'; simplify in A'; - destruct A'; clear A'; rewrite < count_O_mem in H1; - rewrite > Hcut in H1; destruct H1; + destruct A'; rewrite < count_O_mem in H1; + rewrite > Hcut in H1; simplify in H1; destruct H1; |2: simplify; rewrite > cmp_refl; reflexivity;] |2: intros (Ul1); lapply (H Ul1); unfold Not; intros (A); apply Hletin; intros (r Mrl1); lapply (A r); - [2: simplify; rewrite > Mrl1; cases (cmp d r t); reflexivity] - generalize in match Hletin1; simplify; apply (cmpP d r t); + [2: simplify; rewrite > Mrl1; cases (cmp d r a); reflexivity] + generalize in match Hletin1; simplify; apply (cmpP d r a); simplify; intros (E Hc); [2: assumption] destruct Hc; rewrite < count_O_mem in Mrl1; - rewrite > Hcut in Mrl1; destruct Mrl1;]] + rewrite > Hcut in Mrl1; simplify in Mrl1; destruct Mrl1;]] qed. lemma mem_finType : ∀d:finType.∀x:d. mem d x (enum d) = true. @@ -195,32 +195,32 @@ lemma sub_enumP : ∀d:finType.∀p:d→bool.∀x:sub_eqType d p. intros (d p x); cases x (t Ht); clear x; generalize in match (mem_finType d t); generalize in match (uniq_fintype_enum d); -elim (enum d); [destruct H1] simplify; -cases (in_sub_eq d p t1); simplify; +elim (enum d); [simplify in H1; destruct H1] simplify; +cases (in_sub_eq d p a); simplify; [1:generalize in match H3; clear H3; cases s (r Hr); clear s; simplify; intros (Ert1); generalize in match Hr; clear Hr; rewrite > Ert1; clear Ert1; clear r; intros (Ht1); - unfold sub_eqType in ⊢ (? ? match ? (% ? ?) ? ? with [true⇒ ?|false⇒ ?] ?); - simplify; apply (cmpP ? t t1); simplify; intros (Ett1); + unfold sub_eqType in ⊢ (? ? match ? (% ? ?) ? ? with [_ ⇒ ?|_ ⇒ ?] ?); + simplify; apply (cmpP ? t a); simplify; intros (Ett1); [1: cut (count (sub_eqType d p) (cmp (sub_eqType d p) {t,Ht}) (filter d (sigma d p) (if_p d p) l) = O); [1:rewrite > Hcut; reflexivity] lapply (uniq_mem ? ? ? H1); generalize in match Ht; rewrite > Ett1; intros (Ht1'); clear Ht1; generalize in match Hletin; elim l; [ reflexivity] - simplify; cases (in_sub_eq d p t2); simplify; + simplify; cases (in_sub_eq d p a1); simplify; [1: generalize in match H5; cases s; simplify; intros; clear H5; - unfold sub_eqType in ⊢ (? ? match ? (% ? ?) ? ? with [true⇒ ?|false⇒ ?] ?); + unfold sub_eqType in ⊢ (? ? match ? (% ? ?) ? ? with [_ ⇒ ?|_ ⇒ ?] ?); simplify; rewrite > H7; simplify in H4; - generalize in match H4; clear H4; apply (cmpP ? t1 t2); + generalize in match H4; clear H4; apply (cmpP ? a a1); simplify; intros; [destruct H5] apply H3; assumption; |2: apply H3; - generalize in match H4; clear H4; simplify; apply (cmpP ? t1 t2); + generalize in match H4; clear H4; simplify; apply (cmpP ? a a1); simplify; intros; [destruct H6] assumption;] |2: apply H; [ rewrite > uniq_tail in H1; cases (b2pT ? ? (andbP ? ?) H1); assumption] simplify in H2; rewrite > Ett1 in H2; simplify in H2; assumption] |2:rewrite > H; [1:reflexivity|2: rewrite > uniq_tail in H1; cases (b2pT ? ? (andbP ? ?) H1); assumption] - simplify in H2; generalize in match H2; apply (cmpP ? t t1); + simplify in H2; generalize in match H2; apply (cmpP ? t a); intros (E) [2:assumption] clear H; rewrite > E in Ht; rewrite > H3 in Ht; destruct Ht;] qed.