X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fdemo%2Fformal_topology.ma;h=63da5347726baff4f1ab833606f54cef6c89b3d8;hb=e91eb82d2b5e032907758bff0b474d62d57463dc;hp=a683784081bcf5064d92690d3952309b172404a5;hpb=0e50062a04d72b333403d633a77dd113b32d6784;p=helm.git diff --git a/helm/software/matita/library/demo/formal_topology.ma b/helm/software/matita/library/demo/formal_topology.ma index a68378408..63da53477 100644 --- a/helm/software/matita/library/demo/formal_topology.ma +++ b/helm/software/matita/library/demo/formal_topology.ma @@ -13,93 +13,50 @@ (**************************************************************************) include "logic/equality.ma". +include "logic/cprop_connectives.ma". -inductive And (A,B:CProp) : CProp ≝ - conj: A → B → And A B. - -interpretation "constructive and" 'and x y = (And x y). +record powerset (A : Type) : Type ≝ { char : A → CProp }. -inductive Or (A,B:CProp) : CProp ≝ - | or_intro_l: A → Or A B - | or_intro_r: B → Or A B. - -interpretation "constructive or" 'or x y = (Or x y). +interpretation "char" 'subset p = (mk_powerset ? p). -inductive exT2 (A:Type) (P,Q:A→CProp) : CProp ≝ - ex_introT2: ∀w:A. P w → Q w → exT2 A P Q. +interpretation "pwset" 'powerset a = (powerset a). -record powerset (A: Type) : Type ≝ { char: A → CProp }. +interpretation "in" 'mem a X = (char ? X a). -notation "hvbox(2 \sup A)" non associative with precedence 45 -for @{ 'powerset $A }. +definition subseteq ≝ λA.λu,v:\Omega \sup A.∀x.x ∈ u → x ∈ v. -interpretation "powerset" 'powerset A = (powerset A). +interpretation "subseteq" 'subseteq u v = (subseteq ? u v). -notation < "hvbox({ ident i | term 19 p })" with precedence 90 -for @{ 'subset (\lambda ${ident i} : $nonexistent . $p)}. +definition overlaps ≝ λA.λU,V : Ω \sup A. exT2 ? (λx.x ∈ U) (λx.x ∈ V). -notation > "hvbox({ ident i | term 19 p })" with precedence 90 -for @{ 'subset (\lambda ${ident i}. $p)}. +interpretation "overlaps" 'overlaps u v = (overlaps ? u v). -interpretation "subset construction" 'subset \eta.x = (mk_powerset _ x). +definition intersect ≝ λA.λu,v:Ω\sup A.{ y | y ∈ u ∧ y ∈ v }. -definition mem ≝ λA.λS:2 \sup A.λx:A. match S with [mk_powerset c ⇒ c x]. - -notation "hvbox(a break ∈ b)" non associative with precedence 45 -for @{ 'mem $a $b }. - -interpretation "mem" 'mem a S = (mem _ S a). - -definition overlaps ≝ λA:Type.λU,V:2 \sup A.exT2 ? (λa:A. a ∈ U) (λa.a ∈ V). - -notation "hvbox(a break ≬ b)" non associative with precedence 45 -for @{ 'overlaps $a $b }. (* \between *) - -interpretation "overlaps" 'overlaps U V = (overlaps _ U V). - -definition subseteq ≝ λA:Type.λU,V:2 \sup A.∀a:A. a ∈ U → a ∈ V. - -notation "hvbox(a break ⊆ b)" non associative with precedence 45 -for @{ 'subseteq $a $b }. (* \subseteq *) - -interpretation "subseteq" 'subseteq U V = (subseteq _ U V). - -definition intersects ≝ λA:Type.λU,V:2 \sup A.{a | a ∈ U ∧ a ∈ V}. - -notation "hvbox(a break ∩ b)" non associative with precedence 55 -for @{ 'intersects $a $b }. (* \cap *) - -interpretation "intersects" 'intersects U V = (intersects _ U V). - -definition union ≝ λA:Type.λU,V:2 \sup A.{a | a ∈ U ∨ a ∈ V}. - -notation "hvbox(a break ∪ b)" non associative with precedence 55 -for @{ 'union $a $b }. (* \cup *) - -interpretation "union" 'union U V = (union _ U V). +interpretation "intersect" 'intersects u v = (intersect ? u v). record axiom_set : Type ≝ { A:> Type; i: A → Type; - C: ∀a:A. i a → 2 \sup A + C: ∀a:A. i a → Ω \sup A }. -inductive for_all (A: axiom_set) (U,V: 2 \sup A) (covers: A → CProp) : CProp ≝ +inductive for_all (A: axiom_set) (U,V: Ω \sup A) (covers: A → CProp) : CProp ≝ iter: (∀a:A.a ∈ V → covers a) → for_all A U V covers. -inductive covers (A: axiom_set) (U: 2 \sup A) : A → CProp ≝ +inductive covers (A: axiom_set) (U: \Omega \sup A) : A → CProp ≝ refl: ∀a:A. a ∈ U → covers A U a | infinity: ∀a:A. ∀j: i ? a. for_all A U (C ? a j) (covers A U) → covers A U a. notation "hvbox(a break ◃ b)" non associative with precedence 45 for @{ 'covers $a $b }. (* a \ltri b *) -interpretation "coversl" 'covers A U = (for_all _ U A (covers _ U)). -interpretation "covers" 'covers a U = (covers _ U a). +interpretation "coversl" 'covers A U = (for_all ? U A (covers ? U)). +interpretation "covers" 'covers a U = (covers ? U a). definition covers_elim ≝ - λA:axiom_set.λU: 2 \sup A.λP:2 \sup A. - λH1:∀a:A. a ∈ U → a ∈ P. + λA:axiom_set.λU: \Omega \sup A.λP:\Omega \sup A. + λH1: U ⊆ P. λH2:∀a:A.∀j:i ? a. C ? a j ◃ U → C ? a j ⊆ P → a ∈ P. let rec aux (a:A) (p:a ◃ U) on p : a ∈ P ≝ match p return λaa.λ_:aa ◃ U.aa ∈ P with @@ -111,20 +68,20 @@ definition covers_elim ≝ in aux. -inductive ex_such (A : axiom_set) (U,V : 2 \sup A) (fish: A → CProp) : CProp ≝ +inductive ex_such (A : axiom_set) (U,V : \Omega \sup A) (fish: A → CProp) : CProp ≝ found : ∀a. a ∈ V → fish a → ex_such A U V fish. -coinductive fish (A:axiom_set) (U: 2 \sup A) : A → CProp ≝ +coinductive fish (A:axiom_set) (U: \Omega \sup A) : A → CProp ≝ mk_fish: ∀a:A. a ∈ U → (∀j: i ? a. ex_such A U (C ? a j) (fish A U)) → fish A U a. notation "hvbox(a break ⋉ b)" non associative with precedence 45 for @{ 'fish $a $b }. (* a \ltimes b *) -interpretation "fishl" 'fish A U = (ex_such _ U A (fish _ U)). -interpretation "fish" 'fish a U = (fish _ U a). +interpretation "fishl" 'fish A U = (ex_such ? U A (fish ? U)). +interpretation "fish" 'fish a U = (fish ? U a). -let corec fish_rec (A:axiom_set) (U: 2 \sup A) - (P: 2 \sup A) (H1: ∀a:A. a ∈ P → a ∈ U) +let corec fish_rec (A:axiom_set) (U: \Omega \sup A) + (P: Ω \sup A) (H1: P ⊆ U) (H2: ∀a:A. a ∈ P → ∀j: i ? a. C ? a j ≬ P): ∀a:A. ∀p: a ∈ P. a ⋉ U ≝ λa,p. @@ -152,6 +109,24 @@ theorem transitivity: ∀A:axiom_set.∀a:A.∀U,V. a ◃ U → U ◃ V → a assumption]] qed. +theorem covers_elim2: + ∀A: axiom_set. ∀U:Ω \sup A.∀P: A → CProp. + (∀a:A. a ∈ U → P a) → + (∀a:A.∀V:Ω \sup A. a ◃ V → V ◃ U → (∀y. y ∈ V → P y) → P a) → + ∀a:A. a ◃ U → P a. + intros; + change with (a ∈ {a | P a}); + apply (covers_elim ?????? H2); + [ intros 2; simplify; apply H; assumption + | intros; + simplify in H4 ⊢ %; + apply H1; + [ apply (C ? a1 j); + | autobatch; + | assumption; + | assumption]] +qed. + theorem coreflexivity: ∀A:axiom_set.∀a:A.∀V. a ⋉ V → a ∈ V. intros; cases H; @@ -172,20 +147,14 @@ theorem compatibility: ∀A:axiom_set.∀a:A.∀U,V. a ⋉ V → a ◃ U → U generalize in match H; clear H; apply (covers_elim ?? {a|a ⋉ V → U ⋉ V} ??? H1); clear H1; simplify; intros; - [ exists [apply a1] assumption + [ exists [apply x] assumption | cases H2 in j H H1; clear H2 a1; intros; cases (H1 i); clear H1; apply (H3 a1); assumption] qed. -definition singleton ≝ λA:axiom_set.λa:A.{b | a=b}. - -notation "hvbox({ term 19 a })" with precedence 90 for @{ 'singl $a}. +definition leq ≝ λA:axiom_set.λa,b:A. a ◃ {y|b=y}. -interpretation "singleton" 'singl a = (singleton _ a). - -definition leq ≝ λA:axiom_set.λa,b:A. a ◃ {b}. - -interpretation "covered by one" 'leq a b = (leq _ a b). +interpretation "covered by one" 'leq a b = (leq ? a b). theorem leq_refl: ∀A:axiom_set.∀a:A. a ≤ a. intros; @@ -207,24 +176,17 @@ qed. definition uparrow ≝ λA:axiom_set.λa:A.mk_powerset ? (λb:A. a ≤ b). -notation "↑a" with precedence 80 for @{ 'uparrow $a }. - -interpretation "uparrow" 'uparrow a = (uparrow _ a). +interpretation "uparrow" 'uparrow a = (uparrow ? a). -definition downarrow ≝ λA:axiom_set.λU:2 \sup A.mk_powerset ? (λa:A. ↑a ≬ U). +definition downarrow ≝ λA:axiom_set.λU:Ω \sup A.mk_powerset ? (λa:A. (↑a) ≬ U). -notation "↓a" with precedence 80 for @{ 'downarrow $a }. +interpretation "downarrow" 'downarrow a = (downarrow ? a). -interpretation "downarrow" 'downarrow a = (downarrow _ a). +definition fintersects ≝ λA:axiom_set.λU,V:Ω \sup A.↓U ∩ ↓V. -definition fintersects ≝ λA:axiom_set.λU,V:2 \sup A.↓U ∩ ↓V. - -notation "hvbox(U break ↓ V)" non associative with precedence 80 for @{ 'fintersects $U $V }. - -interpretation "fintersects" 'fintersects U V = (fintersects _ U V). +interpretation "fintersects" 'fintersects U V = (fintersects ? U V). record convergent_generated_topology : Type ≝ { AA:> axiom_set; - convergence: ∀a:AA.∀U,V:2 \sup AA. a ◃ U → a ◃ V → a ◃ U ↓ V + convergence: ∀a:AA.∀U,V:Ω \sup AA. a ◃ U → a ◃ V → a ◃ (U ↓ V) }. -