X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fdemo%2Fnatural_deduction.ma;h=9a7fd3671656547cb68fb7adfacc4e52c7cd2315;hb=e880d6eab5e1700f4a625ddcd7d0fa8f0cce2dcc;hp=a75d0cb8720018c84395bf30676bac4fec92de8b;hpb=7ce9eb0e973e414c988b416d118efe860516e275;p=helm.git diff --git a/helm/software/matita/library/demo/natural_deduction.ma b/helm/software/matita/library/demo/natural_deduction.ma index a75d0cb87..9a7fd3671 100644 --- a/helm/software/matita/library/demo/natural_deduction.ma +++ b/helm/software/matita/library/demo/natural_deduction.ma @@ -12,134 +12,67 @@ (* *) (**************************************************************************) -definition cast ≝ λA:CProp.λa:A.a. - -notation < "[ a ] \sup H" with precedence 19 for @{ 'ass $a $H }. -interpretation "assumption" 'ass a H = (cast a H). - -inductive Imply (A,B:CProp) : CProp ≝ - Imply_intro: (A → B) → Imply A B. - -notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }. -interpretation "Imply" 'Imply a b = (Imply a b). - -notation < "\infrule hbox(\emsp b \emsp) ab (⇒\sub\i) " with precedence 19 for @{ 'Imply_intro $ab (λ${ident H}:$p.$b) }. -interpretation "Imply_intro" 'Imply_intro ab \eta.b = (cast ab (Imply_intro _ _ b)). - -definition Imply_elim ≝ λA,B.λf:Imply A B.λa:A.match f with [ Imply_intro g ⇒ g a]. - -notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) b (⇒\sub\e) " with precedence 19 for @{ 'Imply_elim $ab $a $b }. -interpretation "Imply_elim" 'Imply_elim ab a b = (cast b (Imply_elim _ _ ab a)). - -inductive And (A,B:CProp) : CProp ≝ - And_intro: A → B → And A B. - -interpretation "constructive and" 'and x y = (And x y). - -notation < "\infrule hbox(\emsp a \emsp\emsp\emsp b \emsp) ab (∧\sub\i)" with precedence 19 for @{ 'And_intro $a $b $ab }. -interpretation "And_intro" 'And_intro a b ab = (cast ab (And_intro _ _ a b)). - -definition And_elim_l ≝ - λA,B.λc:A∧B.match c with [ And_intro a b ⇒ a ]. - -notation < "\infrule hbox(\emsp ab \emsp) a (∧\sub\e\sup\l)" with precedence 19 for @{ 'And_elim_l $ab $a }. -interpretation "And_elim_l" 'And_elim_l ab a = (cast a (And_elim_l _ _ ab)). - -definition And_elim_r ≝ - λA,B.λc:A∧B.match c with [ And_intro a b ⇒ b ]. - -notation < "\infrule hbox(\emsp ab \emsp) b (∧\sub\e\sup\r)" with precedence 19 for @{ 'And_elim_r $ab $b }. -interpretation "And_elim_r" 'And_elim_r ab b = (cast b (And_elim_r _ _ ab)). - -inductive Or (A,B:CProp) : CProp ≝ - | Or_intro_l: A → Or A B - | Or_intro_r: B → Or A B. - -interpretation "constructive or" 'or x y = (Or x y). - -notation < "\infrule hbox(\emsp a \emsp) ab (∨\sub\i\sup\l)" with precedence 19 for @{ 'Or_intro_l $a $ab }. -interpretation "Or_intro_l" 'Or_intro_l a ab = (cast ab (Or_intro_l _ _ a)). - -notation < "\infrule hbox(\emsp b \emsp) ab (∨\sub\i\sup\l)" with precedence 19 for @{ 'Or_intro_r $b $ab }. -interpretation "Or_intro_l" 'Or_intro_r b ab = (cast ab (Or_intro_r _ _ b)). - -definition Or_elim ≝ - λA,B,C:CProp.λc:A∨B.λfa: A → C.λfb: B → C. - match c with [ Or_intro_l a ⇒ fa a | Or_intro_r b ⇒ fb b]. - -notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp ac \emsp\emsp\emsp bc \emsp) c (∨\sub\e)" with precedence 19 for @{ 'Or_elim $ab (λ${ident Ha}:$ta.$ac) (λ${ident Hb}:$tb.$bc) $c }. -interpretation "Or_elim" 'Or_elim ab ac bc c = (cast c (Or_elim _ _ _ ab ac bc)). - -inductive Exists (A:Type) (P:A→CProp) : CProp ≝ - Exists_intro: ∀w:A. P w → Exists A P. - -interpretation "constructive ex" 'exists \eta.x = (Exists _ x). - -notation < "\infrule hbox(\emsp Pn \emsp) Px (∃\sub\i)" with precedence 19 for @{ 'Exists_intro $Pn $Px }. -interpretation "Exists_intro" 'Exists_intro Pn Px = (cast Px (Exists_intro _ _ _ Pn)). - -definition Exists_elim ≝ - λA:Type.λP:A→CProp.λC:CProp.λc:∃x:A.P x.λH:(∀x.P x → C). - match c with [ Exists_intro w p ⇒ H w p ]. - -notation < "\infrule hbox(\emsp ExPx \emsp\emsp\emsp Pc \emsp) c (∃\sub\e)" with precedence 19 for @{ 'Exists_elim $ExPx (λ${ident n}:$tn.λ${ident HPn}:$Pn.$Pc) $c }. -interpretation "Exists_elim" 'Exists_elim ExPx Pc c = (cast c (Exists_elim _ _ _ ExPx Pc)). - -inductive Forall (A:Type) (P:A→CProp) : CProp ≝ - Forall_intro: (∀n:A. P n) → Forall A P. - -notation "\forall ident x:A.break term 19 Px" with precedence 20 for @{ 'Forall (λ${ident x}:$A.$Px) }. -interpretation "Forall" 'Forall \eta.Px = (Forall _ Px). - -notation < "\infrule hbox(\emsp Px \emsp) Pn (∀\sub\i)" with precedence 19 for @{ 'Forall_intro (λ${ident x}:$tx.$Px) $Pn }. -interpretation "Forall_intro" 'Forall_intro Px Pn = (cast Pn (Forall_intro _ _ Px)). - -definition Forall_elim ≝ - λA:Type.λP:A→CProp.λn:A.λf:∀x:A.P x.match f with [ Forall_intro g ⇒ g n ]. - -notation < "\infrule hbox(\emsp Px \emsp) Pn (∀\sub\i)" with precedence 19 for @{ 'Forall_elim $Px $Pn }. -interpretation "Forall_elim" 'Forall_elim Px Pn = (cast Pn (Forall_elim _ _ _ Px)). +include "didactic/support/natural_deduction.ma". + +lemma RAA_to_EM : A ∨ ¬ A. + + apply rule (prove (A ∨ ¬ A)); + + apply rule (RAA [H] ⊥); + apply rule (¬#e (¬A) A); + [ apply rule (¬#i [H1] ⊥); + apply rule (¬#e (¬(A∨¬A)) (A∨¬A)); + [ apply rule (discharge [H]); + | apply rule (∨#i_l A); + apply rule (discharge [H1]); + ] + | apply rule (RAA [H2] ⊥); + apply rule (¬#e (¬(A∨¬A)) (A∨¬A)); + [ apply rule (discharge [H]); + | apply rule (∨#i_r (¬A)); + apply rule (discharge [H2]); + ] + ] +qed. -axiom A: CProp. -axiom B: CProp. -axiom C: CProp. -axiom D: CProp. -axiom E: CProp. +lemma RA_to_EM1 : A ∨ ¬ A. + + apply rule (prove (A ∨ ¬ A)); + + apply rule (RAA [H] ⊥); + apply rule (¬#e (¬¬A) (¬A)); + [ apply rule (¬#i [H2] ⊥); + apply rule (¬#e (¬(A∨¬A)) (A∨¬A)); + [ apply rule (discharge [H]); + | apply rule (∨#i_r (¬A)); + apply rule (discharge [H2]); + ] + | apply rule (¬#i [H1] ⊥); + apply rule (¬#e (¬(A∨¬A)) (A∨¬A)); + [ apply rule (discharge [H]); + | apply rule (∨#i_l A); + apply rule (discharge [H1]); + ] + ] +qed. lemma ex1 : (A ⇒ E) ∨ B ⇒ A ∧ C ⇒ (E ∧ C) ∨ B. -repeat (apply cast; constructor 1; intro); -apply cast; apply (Or_elim (A ⇒ E) B (E∧C∨B)); try intro; -[ apply cast; assumption -| apply cast; apply Or_intro_l; - apply cast; constructor 1; - [ apply cast; apply (Imply_elim A E); - [ apply cast; assumption - | apply cast; apply (And_elim_l A C); - apply cast; assumption + + apply rule (prove ((A⇒E)∨B⇒A∧C⇒E∧C∨B)); + + apply rule (⇒#i [H] (A∧C⇒E∧C∨B)); + apply rule (⇒#i [K] (E∧C∨B)); + apply rule (∨#e ((A⇒E)∨B) [C1] (E∧C∨B) [C2] (E∧C∨B)); +[ apply rule (discharge [H]); +| apply rule (∨#i_l (E∧C)); + apply rule (∧#i E C); + [ apply rule (⇒#e (A⇒E) A); + [ apply rule (discharge [C1]); + | apply rule (∧#e_l (A∧C)); apply rule (discharge [K]); ] - | apply cast; apply (And_elim_r A C); - apply cast; assumption + | apply rule (∧#e_r (A∧C)); apply rule (discharge [K]); ] -| apply cast; apply Or_intro_r; - apply cast; assumption +| apply rule (∨#i_r B); apply rule (discharge [C2]); ] qed. -axiom N: Type. -axiom R: N → N → CProp. - -lemma ex2: (∀a:N.∀b:N.R a b ⇒ R b a) ⇒ ∀z:N.(∃x.R x z) ⇒ ∃y. R z y. - apply cast; apply Imply_intro; intro; - apply cast; apply Forall_intro; intro z; - apply cast; apply Imply_intro; intro; - apply cast; apply (Exists_elim N (λy.R y z)); try intros (n); - [ apply cast; assumption - | apply cast; apply (Exists_intro ? ? n); - apply cast; apply (Imply_elim (R n z) (R z n)); - [ apply cast; apply (Forall_elim N (λb:N.R n b ⇒ R b n) z); - apply cast; apply (Forall_elim N (λa:N.∀b:N.R a b ⇒ R b a) n); - apply cast; assumption - | apply cast; assumption - ] - ] -qed. \ No newline at end of file