X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fdemo%2Fpower_derivative.ma;h=10cb21835790765e9e7fe64e39bd5b3f862251fb;hb=7cb22a7f8107a6cde0b77b7879e04f586a347102;hp=adf85249967c8fe1c402b82dcabbb4839679a44c;hpb=05b38c588708726f48288227221a8b706544b0a7;p=helm.git diff --git a/helm/software/matita/library/demo/power_derivative.ma b/helm/software/matita/library/demo/power_derivative.ma index adf852499..10cb21835 100644 --- a/helm/software/matita/library/demo/power_derivative.ma +++ b/helm/software/matita/library/demo/power_derivative.ma @@ -24,24 +24,17 @@ axiom Rmult: R→R→R. notation "0" with precedence 89 for @{ 'zero }. -interpretation "Rzero" 'zero = - (cic:/matita/demo/power_derivative/R0.con). -interpretation "Nzero" 'zero = - (cic:/matita/nat/nat/nat.ind#xpointer(1/1/1)). +interpretation "Rzero" 'zero = (R0). +interpretation "Nzero" 'zero = (O). notation "1" with precedence 89 for @{ 'one }. -interpretation "Rone" 'one = - (cic:/matita/demo/power_derivative/R1.con). -interpretation "None" 'one = - (cic:/matita/nat/nat/nat.ind#xpointer(1/1/2) - cic:/matita/nat/nat/nat.ind#xpointer(1/1/1)). +interpretation "Rone" 'one = (R1). +interpretation "None" 'one = (S O). -interpretation "Rplus" 'plus x y = - (cic:/matita/demo/power_derivative/Rplus.con x y). +interpretation "Rplus" 'plus x y = (Rplus x y). -interpretation "Rmult" 'middot x y = - (cic:/matita/demo/power_derivative/Rmult.con x y). +interpretation "Rmult" 'middot x y = (Rmult x y). definition Fplus ≝ λf,g:R→R.λx:R.f x + g x. @@ -49,21 +42,13 @@ definition Fplus ≝ definition Fmult ≝ λf,g:R→R.λx:R.f x · g x. -interpretation "Fplus" 'plus x y = - (cic:/matita/demo/power_derivative/Fplus.con x y). -interpretation "Fmult" 'middot x y = - (cic:/matita/demo/power_derivative/Fmult.con x y). +interpretation "Fplus" 'plus x y = (Fplus x y). +interpretation "Fmult" 'middot x y = (Fmult x y). notation "2" with precedence 89 for @{ 'two }. -interpretation "Rtwo" 'two = - (cic:/matita/demo/power_derivative/Rplus.con - cic:/matita/demo/power_derivative/R1.con - cic:/matita/demo/power_derivative/R1.con). -interpretation "Ntwo" 'two = - (cic:/matita/nat/nat/nat.ind#xpointer(1/1/2) - (cic:/matita/nat/nat/nat.ind#xpointer(1/1/2) - (cic:/matita/nat/nat/nat.ind#xpointer(1/1/1)))). +interpretation "Rtwo" 'two = (Rplus R1 R1). +interpretation "Ntwo" 'two = (S (S O)). let rec Rpower (x:R) (n:nat) on n ≝ match n with @@ -71,8 +56,7 @@ let rec Rpower (x:R) (n:nat) on n ≝ | S n ⇒ x · (Rpower x n) ]. -interpretation "Rpower" 'exp x n = - (cic:/matita/demo/power_derivative/Rpower.con x n). +interpretation "Rpower" 'exp x n = (Rpower x n). let rec inj (n:nat) on n : R ≝ match n with @@ -223,8 +207,7 @@ notation "hvbox('D'[f])" non associative with precedence 90 for @{ 'derivative $f }. -interpretation "Rderivative" 'derivative f = - (cic:/matita/demo/power_derivative/derivative.con f). +interpretation "Rderivative" 'derivative f = (derivative f). notation "hvbox('x' \sup n)" non associative with precedence 60 @@ -234,8 +217,7 @@ notation "hvbox('x')" non associative with precedence 60 for @{ 'monomio 1 }. -interpretation "Rmonomio" 'monomio n = - (cic:/matita/demo/power_derivative/monomio.con n). +interpretation "Rmonomio" 'monomio n = (monomio n). axiom derivative_x0: D[x \sup 0] = 0. axiom derivative_x1: D[x] = 1. @@ -264,7 +246,7 @@ theorem derivative_power: ∀n:nat. D[x \sup n] = n·x \sup (pred n). case left. suppose (0 < m) (m_pos). using (S_pred ? m_pos) we proved (m = 1 + pred m) (H1). - by H1 done. + by H1 done. case right. suppose (0=m) (m_zero). by m_zero, Fmult_zero_f done. @@ -286,15 +268,13 @@ for @{ 'derivative ${default @{\lambda ${ident i} : $ty. $p)} @{\lambda ${ident i} . $p}}}. -interpretation "Rderivative" 'derivative \eta.f = - (cic:/matita/demo/power_derivative/derivative.con f). +interpretation "Rderivative" 'derivative \eta.f = (derivative f). *) notation "hvbox(\frac 'd' ('d' 'x') break p)" with precedence 90 for @{ 'derivative $p}. -interpretation "Rderivative" 'derivative f = - (cic:/matita/demo/power_derivative/derivative.con f). +interpretation "Rderivative" 'derivative f = (derivative f). theorem derivative_power': ∀n:nat. D[x \sup (1+n)] = (1+n) · x \sup n. assume n:nat.