X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fdemo%2Fpower_derivative.ma;h=76fa66115daa741db40ed4aa04502513da6b9b54;hb=c00f22f7afa508881c8d116928e1c460600ba0ac;hp=fd58c9564ae12b329e44384d7df14b0b5a07eef0;hpb=9e7db2554d0fd904966c0e6988f1c8763dd15a0b;p=helm.git diff --git a/helm/software/matita/library/demo/power_derivative.ma b/helm/software/matita/library/demo/power_derivative.ma index fd58c9564..76fa66115 100644 --- a/helm/software/matita/library/demo/power_derivative.ma +++ b/helm/software/matita/library/demo/power_derivative.ma @@ -12,8 +12,6 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/demo/power_derivative". - include "nat/plus.ma". include "nat/orders.ma". include "nat/compare.ma". @@ -256,7 +254,6 @@ theorem derivative_power: ∀n:nat. D[x \sup n] = n·x \sup (pred n). elim n 0. case O. the thesis becomes (D[x \sup 0] = 0·x \sup (pred 0)). - by _ done. case S (m:nat). by induction hypothesis we know @@ -265,24 +262,24 @@ theorem derivative_power: ∀n:nat. D[x \sup n] = n·x \sup (pred n). (D[x \sup (1+m)] = (1+m) · x \sup m). we need to prove (m · (x \sup (1+ pred m)) = m · x \sup m) (Ppred). - by _ we proved (0 < m ∨ 0=m) (cases). + we proved (0 < m ∨ 0=m) (cases). we proceed by induction on cases to prove (m · (x \sup (1+ pred m)) = m · x \sup m). case left. suppose (0 < m) (m_pos). - by (S_pred m m_pos) we proved (m = 1 + pred m) (H1). - by _ + using (S_pred ? m_pos) we proved (m = 1 + pred m) (H1). done. case right. - suppose (0=m) (m_zero). by _ done. + suppose (0=m) (m_zero). + done. conclude (D[x \sup (1+m)]) = (D[x · x \sup m]). = (D[x] · x \sup m + x · D[x \sup m]). - = (x \sup m + x · (m · x \sup (pred m))). + = (x \sup m + x · (m · x \sup (pred m))) timeout=30. = (x \sup m + m · (x \sup (1 + pred m))). = (x \sup m + m · x \sup m). - = ((1+m) · x \sup m) by Fmult_one_f Fmult_commutative Fmult_Fplus_distr costante_sum + = ((1+m) · x \sup m) timeout=30 by Fmult_one_f, Fmult_commutative, Fmult_Fplus_distr, costante_sum done. qed. @@ -310,7 +307,6 @@ theorem derivative_power': ∀n:nat. D[x \sup (1+n)] = (1+n) · x \sup n. (D[x \sup (1+n)] = (1+n) · x \sup n).*) elim n 0. case O. the thesis becomes (D[x \sup 1] = 1 · x \sup 0). - by _ done. case S (m:nat). by induction hypothesis we know @@ -323,7 +319,7 @@ theorem derivative_power': ∀n:nat. D[x \sup (1+n)] = (1+n) · x \sup n. = (D[x] · x \sup (1+m) + x · D[x \sup (1+m)]). = (x \sup (1+m) + x · (costante (1+m) · x \sup m)). = (x \sup (1+m) + costante (1+m) · x \sup (1+m)). - = ((2+m) · x \sup (1+m)) by Fmult_one_f Fmult_commutative - Fmult_Fplus_distr assoc_plus plus_n_SO costante_sum + = ((2+m) · x \sup (1+m)) timeout=30 by Fmult_one_f, Fmult_commutative, + Fmult_Fplus_distr, assoc_plus, plus_n_SO, costante_sum done. -qed. \ No newline at end of file +qed.