X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fdidactic%2Fexercises%2Fduality.ma;h=14927653e2a08093452ebe02c5dd7ce1cab1a335;hb=e78cf74f8976cf0ca554f64baa9979d0423ee927;hp=ea3a987d389937410b4d4f9fb3e05be42847bf9d;hpb=ff6a1396270493dcf0e1f673f32a8213a8ce3751;p=helm.git diff --git a/helm/software/matita/library/didactic/exercises/duality.ma b/helm/software/matita/library/didactic/exercises/duality.ma index ea3a987d3..14927653e 100644 --- a/helm/software/matita/library/didactic/exercises/duality.ma +++ b/helm/software/matita/library/didactic/exercises/duality.ma @@ -1,3 +1,17 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + (* Esercizio 0 =========== @@ -65,7 +79,7 @@ include "nat/minus.ma". definition if_then_else ≝ λT:Type.λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. notation > "'if' term 19 e 'then' term 19 t 'else' term 90 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -interpretation "Formula if_then_else" 'if_then_else e t f = (if_then_else _ e t f). +interpretation "Formula if_then_else" 'if_then_else e t f = (if_then_else ? e t f). definition max ≝ λn,m. if eqb (n - m) 0 then m else n. definition min ≝ λn,m. if eqb (n - m) 0 then n else m. @@ -116,7 +130,7 @@ let rec sem (v: nat → nat) (F: Formula) on F : nat ≝ *) notation < "[[ \nbsp term 19 a \nbsp ]] \nbsp \sub term 90 v" non associative with precedence 90 for @{ 'semantics $v $a }. notation > "[[ term 19 a ]] \sub term 90 v" non associative with precedence 90 for @{ 'semantics $v $a }. -notation > "[[ term 19 a ]]_ term 90 v" non associative with precedence 90 for @{ sem $v $a }. +notation > "[[ term 19 a ]] term 90 v" non associative with precedence 90 for @{ sem $v $a }. interpretation "Semantic of Formula" 'semantics v a = (sem v a). definition v20 ≝ λx. @@ -130,8 +144,10 @@ definition v20 ≝ λx. La semantica della formula `(A ∨ C)` nel mondo `v20` in cui `A` vale `2` e `C` vale `0` deve valere `1`. + Decommenta ed esegui. *) -eval normalize on [[FOr (FAtom 0) (FAtom 2)]]_v20. + +(* eval normalize on [[FOr (FAtom 0) (FAtom 2)]]v20. *) (*DOCBEGIN @@ -142,12 +158,13 @@ Gli strumenti per la dimostrazione assistita sono corredati da librerie di teoremi già dimostrati. Per portare a termine l'esercitazione sono necessari i seguenti lemmi: -* lemma `sem_le_1` : `∀F,v. [[ F ]]_v ≤ 1` +* lemma `sem_le_1` : `∀F,v. [[ F ]]v ≤ 1` * lemma `min_1_1` : `∀x. x ≤ 1 → 1 - (1 - x) = x` * lemma `min_bool` : `∀n. min n 1 = 0 ∨ min n 1 = 1` -* lemma `min_max` : `∀F,G,v.min (1 - [[F]]_v) (1 - [[G]]_v) = 1 - max [[F]]_v [[G]]_v` -* lemma `max_min` : `∀F,G,v.max (1 - [[F]]_v) (1 - [[G]]_v) = 1 - min [[F]]_v [[G]]_v` +* lemma `min_max` : `∀F,G,v.min (1 - [[F]]v) (1 - [[G]]v) = 1 - max [[F]]v [[G]]v` +* lemma `max_min` : `∀F,G,v.max (1 - [[F]]v) (1 - [[G]]v) = 1 - min [[F]]v [[G]]v` * lemma `equiv_rewrite` : `∀F1,F2,F3. F1 ≡ F2 → F1 ≡ F3 → F2 ≡ F3` +* lemma `equiv_sym` : `∀F1,F2. F1 ≡ F2 → F2 ≡ F1` DOCEND*) @@ -156,12 +173,12 @@ DOCEND*) Non modificare quanto segue. *) -lemma sem_bool : ∀F,v. [[ F ]]_v = 0 ∨ [[ F ]]_v = 1. intros; elim F; simplify; [left;reflexivity; |right;reflexivity; |cases (v n);[left;|cases n1;right;]reflexivity; |4,5,6: cases H; cases H1; rewrite > H2; rewrite > H3; simplify; first [ left;reflexivity | right; reflexivity ]. |cases H; rewrite > H1; simplify;[right|left]reflexivity;] qed. +lemma sem_bool : ∀F,v. [[ F ]]v = 0 ∨ [[ F ]]v = 1. intros; elim F; simplify; [left;reflexivity; |right;reflexivity; |cases (v n);[left;|cases n1;right;]reflexivity; |4,5,6: cases H; cases H1; rewrite > H2; rewrite > H3; simplify; first [ left;reflexivity | right; reflexivity ]. |cases H; rewrite > H1; simplify;[right|left]reflexivity;] qed. lemma min_bool : ∀n. min n 1 = 0 ∨ min n 1 = 1. intros; cases n; [left;reflexivity] cases n1; right; reflexivity; qed. -lemma min_max : ∀F,G,v. min (1 - [[F]]_v) (1 - [[G]]_v) = 1 - max [[F]]_v [[G]]_v. intros; cases (sem_bool F v);cases (sem_bool G v); rewrite > H; rewrite >H1; simplify; reflexivity; qed. -lemma max_min : ∀F,G,v. max (1 - [[F]]_v) (1 - [[G]]_v) = 1 - min [[F]]_v [[G]]_v. intros; cases (sem_bool F v);cases (sem_bool G v); rewrite > H; rewrite >H1; simplify; reflexivity; qed. +lemma min_max : ∀F,G,v. min (1 - [[F]]v) (1 - [[G]]v) = 1 - max [[F]]v [[G]]v. intros; cases (sem_bool F v);cases (sem_bool G v); rewrite > H; rewrite >H1; simplify; reflexivity; qed. +lemma max_min : ∀F,G,v. max (1 - [[F]]v) (1 - [[G]]v) = 1 - min [[F]]v [[G]]v. intros; cases (sem_bool F v);cases (sem_bool G v); rewrite > H; rewrite >H1; simplify; reflexivity; qed. lemma min_1_1 : ∀x.x ≤ 1 → 1 - (1 - x) = x. intros; inversion H; intros; destruct; [reflexivity;] rewrite < (le_n_O_to_eq ? H1); reflexivity;qed. -lemma sem_le_1 : ∀F,v.[[F]]_v ≤ 1. intros; cases (sem_bool F v); rewrite > H; [apply le_O_n|apply le_n]qed. +lemma sem_le_1 : ∀F,v.[[F]]v ≤ 1. intros; cases (sem_bool F v); rewrite > H; [apply le_O_n|apply le_n]qed. (* Esercizio 2 =========== @@ -188,21 +205,24 @@ let rec negate (F: Formula) on F : Formula ≝ Testare la funzione `negate`. Il risultato atteso è: - FOr (FNot (FAtom O)) (FImpl FTop (FNot (FAtom 1))) + FOr (FNot (FAtom O)) (FImpl FTop (FNot (FAtom 1))) + + Decommenta ed esegui *) -eval normalize on (negate (FOr (FAtom 0) (FImpl FTop (FAtom 1)))). +(* eval normalize on (negate (FOr (FAtom 0) (FImpl FTop (FAtom 1)))). *) (* ATTENZIONE ========== Non modificare quanto segue *) -definition equiv ≝ λF1,F2. ∀v.[[ F1 ]]_v = [[ F2 ]]_v. +definition equiv ≝ λF1,F2. ∀v.[[ F1 ]]v = [[ F2 ]]v. notation "hvbox(a \nbsp break mstyle color #0000ff (≡) \nbsp b)" non associative with precedence 45 for @{ 'equivF $a $b }. notation > "a ≡ b" non associative with precedence 50 for @{ equiv $a $b }. interpretation "equivalence for Formulas" 'equivF a b = (equiv a b). -lemma equiv_rewrite : ∀F1,F2,F3. F1 ≡ F2 → F1 ≡ F3 → F2 ≡ F3. intros; intro; autobatch. qed. +lemma equiv_rewrite : ∀F1,F2,F3. F1 ≡ F2 → F1 ≡ F3 → F2 ≡ F3. intros; intro; rewrite < H; rewrite < H1; reflexivity. qed. +lemma equiv_sym : ∀a,b.a ≡ b → b ≡ a. intros 4;symmetry;apply H;qed. (* Esercizio 3 =========== @@ -239,9 +259,11 @@ let rec dualize (F : Formula) on F : Formula ≝ Testare la funzione `dualize`. Il risultato atteso è: FAnd (FNot (FAtom O)) (FOr (FAtom 1) FTop) + + Decommenta ed esegui. *) -eval normalize on (dualize (FImpl (FAtom 0) (FAnd (FAtom 1) FBot))). +(* eval normalize on (dualize (FImpl (FAtom 0) (FAnd (FAtom 1) FBot))). *) (* Spiegazione =========== @@ -281,23 +303,23 @@ DOCEND*) a `F` in un mondo invertito. *) lemma negate_invert: - ∀F:Formula.∀v:ℕ→ℕ.[[ negate F ]]_v=[[ F ]]_(invert v). + ∀F:Formula.∀v:ℕ→ℕ.[[ negate F ]]v=[[ F ]](invert v). assume F:Formula. assume v:(ℕ→ℕ). -we proceed by induction on F to prove ([[ negate F ]]_v=[[ F ]]_(invert v)). +we proceed by induction on F to prove ([[ negate F ]]v=[[ F ]](invert v)). case FBot. (*BEGIN*) - the thesis becomes ([[ negate FBot ]]_v=[[ FBot ]]_(invert v)). + the thesis becomes ([[ negate FBot ]]v=[[ FBot ]](invert v)). (*END*) done. case FTop. (*BEGIN*) - the thesis becomes ([[ negate FTop ]]_v=[[ FTop ]]_(invert v)). + the thesis becomes ([[ negate FTop ]]v=[[ FTop ]](invert v)). (*END*) done. case FAtom. assume n : ℕ. - the thesis becomes ((*BEGIN*)[[ negate (FAtom n) ]]_v=[[ FAtom n ]]_(invert v)(*END*)). + the thesis becomes ((*BEGIN*)[[ negate (FAtom n) ]]v=[[ FAtom n ]](invert v)(*END*)). the thesis becomes ((*BEGIN*)1 - (min (v n) 1)= min (invert v n) 1(*END*)). the thesis becomes (1 - (min (v n) 1)= min (if eqb (min (v n) 1) 0 then 1 else 0) 1). by min_bool we proved (min (v n) 1 = 0 ∨ min (v n) 1 = 1) (H1); @@ -326,65 +348,65 @@ we proceed by induction on F to prove ([[ negate F ]]_v=[[ F ]]_(invert v)). case FAnd. assume f : Formula. by induction hypothesis we know - ((*BEGIN*)[[ negate f ]]_v=[[ f ]]_(invert v)(*END*)) (H). + ((*BEGIN*)[[ negate f ]]v=[[ f ]](invert v)(*END*)) (H). assume f1 : Formula. by induction hypothesis we know - ((*BEGIN*)[[ negate f1 ]]_v=[[ f1 ]]_(invert v)(*END*)) (H1). + ((*BEGIN*)[[ negate f1 ]]v=[[ f1 ]](invert v)(*END*)) (H1). the thesis becomes - ([[ negate (FAnd f f1) ]]_v=[[ FAnd f f1 ]]_(invert v)). + ([[ negate (FAnd f f1) ]]v=[[ FAnd f f1 ]](invert v)). the thesis becomes - (min [[ negate f ]]_v [[ negate f1]]_v = [[ FAnd f f1 ]]_(invert v)). + (min [[ negate f ]]v [[ negate f1]]v = [[ FAnd f f1 ]](invert v)). conclude - (min [[ negate f ]]_v [[ negate f1]]_v) - = (min [[ f ]]_(invert v) [[ negate f1]]_v) by (*BEGIN*)H(*END*). - = (min [[ f ]]_(invert v) [[ f1]]_(invert v)) by (*BEGIN*)H1(*END*). + (min [[ negate f ]]v [[ negate f1]]v) + = (min [[ f ]](invert v) [[ negate f1]]v) by (*BEGIN*)H(*END*). + = (min [[ f ]](invert v) [[ f1]](invert v)) by (*BEGIN*)H1(*END*). done. case FOr. (*BEGIN*) assume f : Formula. by induction hypothesis we know - ([[ negate f ]]_v=[[ f ]]_(invert v)) (H). + ([[ negate f ]]v=[[ f ]](invert v)) (H). assume f1 : Formula. by induction hypothesis we know - ([[ negate f1 ]]_v=[[ f1 ]]_(invert v)) (H1). + ([[ negate f1 ]]v=[[ f1 ]](invert v)) (H1). the thesis becomes - ([[ negate (FOr f f1) ]]_v=[[ FOr f f1 ]]_(invert v)). + ([[ negate (FOr f f1) ]]v=[[ FOr f f1 ]](invert v)). the thesis becomes - (max [[ negate f ]]_v [[ negate f1]]_v = [[ FOr f f1 ]]_(invert v)). + (max [[ negate f ]]v [[ negate f1]]v = [[ FOr f f1 ]](invert v)). conclude - (max [[ negate f ]]_v [[ negate f1]]_v) - = (max [[ f ]]_(invert v) [[ negate f1]]_v) by H. - = (max [[ f ]]_(invert v) [[ f1]]_(invert v)) by H1. + (max [[ negate f ]]v [[ negate f1]]v) + = (max [[ f ]](invert v) [[ negate f1]]v) by H. + = (max [[ f ]](invert v) [[ f1]](invert v)) by H1. (*END*) done. case FImpl. (*BEGIN*) assume f : Formula. by induction hypothesis we know - ([[ negate f ]]_v=[[ f ]]_(invert v)) (H). + ([[ negate f ]]v=[[ f ]](invert v)) (H). assume f1 : Formula. by induction hypothesis we know - ([[ negate f1 ]]_v=[[ f1 ]]_(invert v)) (H1). + ([[ negate f1 ]]v=[[ f1 ]](invert v)) (H1). the thesis becomes - ([[ negate (FImpl f f1) ]]_v=[[ FImpl f f1 ]]_(invert v)). + ([[ negate (FImpl f f1) ]]v=[[ FImpl f f1 ]](invert v)). the thesis becomes - (max (1 - [[ negate f ]]_v) [[ negate f1]]_v = [[ FImpl f f1 ]]_(invert v)). + (max (1 - [[ negate f ]]v) [[ negate f1]]v = [[ FImpl f f1 ]](invert v)). conclude - (max (1 - [[ negate f ]]_v) [[ negate f1]]_v) - = (max (1 - [[ f ]]_(invert v)) [[ negate f1]]_v) by H. - = (max (1 - [[ f ]]_(invert v)) [[ f1]]_(invert v)) by H1. + (max (1 - [[ negate f ]]v) [[ negate f1]]v) + = (max (1 - [[ f ]](invert v)) [[ negate f1]]v) by H. + = (max (1 - [[ f ]](invert v)) [[ f1]](invert v)) by H1. (*END*) done. case FNot. (*BEGIN*) assume f : Formula. by induction hypothesis we know - ([[ negate f ]]_v=[[ f ]]_(invert v)) (H). + ([[ negate f ]]v=[[ f ]](invert v)) (H). the thesis becomes - ([[ negate (FNot f) ]]_v=[[ FNot f ]]_(invert v)). + ([[ negate (FNot f) ]]v=[[ FNot f ]](invert v)). the thesis becomes - (1 - [[ negate f ]]_v=[[ FNot f ]]_(invert v)). - conclude (1 - [[ negate f ]]_v) = (1 - [[f]]_(invert v)) by H. + (1 - [[ negate f ]]v=[[ FNot f ]](invert v)). + conclude (1 - [[ negate f ]]v) = (1 - [[f]](invert v)) by H. (*END*) done. qed. @@ -400,13 +422,13 @@ lemma negate_fun: assume (*BEGIN*)G:Formula(*END*). suppose (*BEGIN*)(F ≡ G) (H)(*END*). the thesis becomes (*BEGIN*)(negate F ≡ negate G)(*END*). - the thesis becomes (*BEGIN*)(∀v:ℕ→ℕ.[[ negate F ]]_v=[[ negate G ]]_v)(*END*). + the thesis becomes (*BEGIN*)(∀v:ℕ→ℕ.[[ negate F ]]v=[[ negate G ]]v)(*END*). assume v:(ℕ→ℕ). conclude - [[ negate F ]]_v - = [[ F ]]_(invert v) by (*BEGIN*)negate_invert(*END*). - = [[ G ]]_((*BEGIN*)invert v(*BEGIN*)) by (*BEGIN*)H(*BEGIN*). - = [[ negate G ]]_(*BEGIN*)v(*BEGIN*) by (*BEGIN*)negate_invert(*END*). + [[ negate F ]]v + = [[ F ]](invert v) by (*BEGIN*)negate_invert(*END*). + = [[ G ]]((*BEGIN*)invert v(*BEGIN*)) by (*BEGIN*)H(*BEGIN*). + = [[ negate G ]](*BEGIN*)v(*BEGIN*) by (*BEGIN*)negate_invert(*END*). done. qed. @@ -420,94 +442,94 @@ lemma not_dualize_eq_negate: ∀F:Formula.negate F ≡ FNot (dualize F). (*BEGIN*) assume F:Formula. - the thesis becomes (∀v:ℕ→ℕ.[[negate F]]_v=[[FNot (dualize F)]]_v). + the thesis becomes (∀v:ℕ→ℕ.[[negate F]]v=[[FNot (dualize F)]]v). (*END*) assume v:(ℕ→ℕ). - we proceed by induction on F to prove ([[negate F]]_v=[[FNot (dualize F)]]_v). + we proceed by induction on F to prove ([[negate F]]v=[[FNot (dualize F)]]v). case FBot. (*BEGIN*) - the thesis becomes ([[ negate FBot ]]_v=[[ FNot (dualize FBot) ]]_v). + the thesis becomes ([[ negate FBot ]]v=[[ FNot (dualize FBot) ]]v). (*END*) done. case FTop. (*BEGIN*) - the thesis becomes ([[ negate FTop ]]_v=[[ FNot (dualize FTop) ]]_v). + the thesis becomes ([[ negate FTop ]]v=[[ FNot (dualize FTop) ]]v). (*END*) done. case FAtom. (*BEGIN*) assume n : ℕ. - the thesis becomes ([[ negate (FAtom n) ]]_v=[[ FNot (dualize (FAtom n)) ]]_v). + the thesis becomes ([[ negate (FAtom n) ]]v=[[ FNot (dualize (FAtom n)) ]]v). (*END*) done. case FAnd. assume f : Formula. by induction hypothesis we know - ([[ negate f ]]_v=[[ FNot (dualize f) ]]_v) (H). + ([[ negate f ]]v=[[ FNot (dualize f) ]]v) (H). assume f1 : Formula. by induction hypothesis we know - ([[ negate f1 ]]_v=[[ FNot (dualize f1) ]]_v) (H1). + ([[ negate f1 ]]v=[[ FNot (dualize f1) ]]v) (H1). the thesis becomes - ([[ negate (FAnd f f1) ]]_v=[[ FNot (dualize (FAnd f f1)) ]]_v). + ([[ negate (FAnd f f1) ]]v=[[ FNot (dualize (FAnd f f1)) ]]v). the thesis becomes - (min [[ negate f ]]_v [[ negate f1 ]]_v=[[ FNot (dualize (FAnd f f1)) ]]_v). + (min [[ negate f ]]v [[ negate f1 ]]v=[[ FNot (dualize (FAnd f f1)) ]]v). conclude - (min (*BEGIN*)[[ negate f ]]_v(*END*) (*BEGIN*)[[ negate f1 ]]_v(*END*)) - = (min (*BEGIN*)[[ FNot (dualize f) ]]_v(*END*) (*BEGIN*)[[ negate f1 ]]_v(*END*)) by H. - = (min (*BEGIN*)[[ FNot (dualize f) ]]_v(*END*) (*BEGIN*)[[ FNot (dualize f1) ]]_v(*END*)) by H1. - = (min (1 - [[ dualize f ]]_v) (1 - [[ dualize f1 ]]_v)). - = (1 - (max [[ dualize f ]]_v [[ dualize f1 ]]_v)) by min_max. + (min (*BEGIN*)[[ negate f ]]v(*END*) (*BEGIN*)[[ negate f1 ]]v(*END*)) + = (min (*BEGIN*)[[ FNot (dualize f) ]]v(*END*) (*BEGIN*)[[ negate f1 ]]v(*END*)) by H. + = (min (*BEGIN*)[[ FNot (dualize f) ]]v(*END*) (*BEGIN*)[[ FNot (dualize f1) ]]v(*END*)) by H1. + = (min (1 - [[ dualize f ]]v) (1 - [[ dualize f1 ]]v)). + = (1 - (max [[ dualize f ]]v [[ dualize f1 ]]v)) by min_max. done. case FOr. (*BEGIN*) assume f : Formula. by induction hypothesis we know - ([[ negate f ]]_v=[[ FNot (dualize f) ]]_v) (H). + ([[ negate f ]]v=[[ FNot (dualize f) ]]v) (H). assume f1 : Formula. by induction hypothesis we know - ([[ negate f1 ]]_v=[[ FNot (dualize f1) ]]_v) (H1). + ([[ negate f1 ]]v=[[ FNot (dualize f1) ]]v) (H1). the thesis becomes - ([[ negate (FOr f f1) ]]_v=[[ FNot (dualize (FOr f f1)) ]]_v). + ([[ negate (FOr f f1) ]]v=[[ FNot (dualize (FOr f f1)) ]]v). the thesis becomes - (max [[ negate f ]]_v [[ negate f1 ]]_v=[[ FNot (dualize (FOr f f1)) ]]_v). + (max [[ negate f ]]v [[ negate f1 ]]v=[[ FNot (dualize (FOr f f1)) ]]v). conclude - (max [[ negate f ]]_v [[ negate f1 ]]_v) - = (max [[ FNot (dualize f) ]]_v [[ negate f1 ]]_v) by H. - = (max [[ FNot (dualize f) ]]_v [[ FNot (dualize f1) ]]_v) by H1. - = (max (1 - [[ dualize f ]]_v) (1 - [[ dualize f1 ]]_v)). - = (1 - (min [[ dualize f ]]_v [[ dualize f1 ]]_v)) by max_min. + (max [[ negate f ]]v [[ negate f1 ]]v) + = (max [[ FNot (dualize f) ]]v [[ negate f1 ]]v) by H. + = (max [[ FNot (dualize f) ]]v [[ FNot (dualize f1) ]]v) by H1. + = (max (1 - [[ dualize f ]]v) (1 - [[ dualize f1 ]]v)). + = (1 - (min [[ dualize f ]]v [[ dualize f1 ]]v)) by max_min. (*END*) done. case FImpl. (*BEGIN*) assume f : Formula. by induction hypothesis we know - ([[ negate f ]]_v=[[ FNot (dualize f) ]]_v) (H). + ([[ negate f ]]v=[[ FNot (dualize f) ]]v) (H). assume f1 : Formula. by induction hypothesis we know - ([[ negate f1 ]]_v=[[ FNot (dualize f1) ]]_v) (H1). + ([[ negate f1 ]]v=[[ FNot (dualize f1) ]]v) (H1). the thesis becomes - ([[ negate (FImpl f f1) ]]_v=[[ FNot (dualize (FImpl f f1)) ]]_v). + ([[ negate (FImpl f f1) ]]v=[[ FNot (dualize (FImpl f f1)) ]]v). the thesis becomes - (max (1 - [[ negate f ]]_v) [[ negate f1 ]]_v=[[ FNot (dualize (FImpl f f1)) ]]_v). + (max (1 - [[ negate f ]]v) [[ negate f1 ]]v=[[ FNot (dualize (FImpl f f1)) ]]v). conclude - (max (1-[[ negate f ]]_v) [[ negate f1 ]]_v) - = (max (1-[[ FNot (dualize f) ]]_v) [[ negate f1 ]]_v) by H. - = (max (1-[[ FNot (dualize f) ]]_v) [[ FNot (dualize f1) ]]_v) by H1. - = (max (1 - [[ FNot (dualize f) ]]_v) (1 - [[ dualize f1 ]]_v)). - = (1 - (min [[ FNot (dualize f) ]]_v [[ dualize f1 ]]_v)) by max_min. + (max (1-[[ negate f ]]v) [[ negate f1 ]]v) + = (max (1-[[ FNot (dualize f) ]]v) [[ negate f1 ]]v) by H. + = (max (1-[[ FNot (dualize f) ]]v) [[ FNot (dualize f1) ]]v) by H1. + = (max (1 - [[ FNot (dualize f) ]]v) (1 - [[ dualize f1 ]]v)). + = (1 - (min [[ FNot (dualize f) ]]v [[ dualize f1 ]]v)) by max_min. (*END*) done. case FNot. (*BEGIN*) assume f : Formula. by induction hypothesis we know - ([[ negate f ]]_v=[[ FNot (dualize f) ]]_v) (H). + ([[ negate f ]]v=[[ FNot (dualize f) ]]v) (H). the thesis becomes - ([[ negate (FNot f) ]]_v=[[ FNot (dualize (FNot f)) ]]_v). + ([[ negate (FNot f) ]]v=[[ FNot (dualize (FNot f)) ]]v). the thesis becomes - (1 - [[ negate f ]]_v=[[ FNot (dualize (FNot f)) ]]_v). - conclude (1 - [[ negate f ]]_v) = (1 - [[ FNot (dualize f) ]]_v) by H. + (1 - [[ negate f ]]v=[[ FNot (dualize (FNot f)) ]]v). + conclude (1 - [[ negate f ]]v) = (1 - [[ FNot (dualize f) ]]v) by H. (*END*) done. qed. @@ -524,20 +546,20 @@ theorem not_inj: assume G:Formula. suppose (FNot F ≡ FNot G) (H). the thesis becomes (F ≡ G). - the thesis becomes (∀v:ℕ→ℕ.[[ F ]]_v=[[ G ]]_v). + the thesis becomes (∀v:ℕ→ℕ.[[ F ]]v=[[ G ]]v). (*END*) assume v:(ℕ→ℕ). - by sem_le_1 we proved ([[F]]_v ≤ 1) (H1). - by (*BEGIN*)sem_le_1(*END*) we proved ([[G]]_v ≤ 1) (H2). - by min_1_1, H1 we proved (1 - (1 - [[F]]_v) = [[F]]_v) (H3). - by (*BEGIN*)min_1_1, H2(*END*) we proved ((*BEGIN*)1 - (1 - [[G]]_v)(*END*) = [[G]]_v) (H4). + by sem_le_1 we proved ([[F]]v ≤ 1) (H1). + by (*BEGIN*)sem_le_1(*END*) we proved ([[G]]v ≤ 1) (H2). + by min_1_1, H1 we proved (1 - (1 - [[F]]v) = [[F]]v) (H3). + by (*BEGIN*)min_1_1, H2(*END*) we proved ((*BEGIN*)1 - (1 - [[G]]v)(*END*) = [[G]]v) (H4). conclude - ([[F]]_v) - = (1 - (1 - [[F]]_v)) by (*BEGIN*)H3(*END*). - = (1 - [[(*BEGIN*)FNot F(*END*)]]_v). - = (1 - [[ FNot G]]_v) by H. - = (1 - (*BEGIN*)(1 - [[G]]_v)(*END*)). - = [[G]]_v by (*BEGIN*)H4(*END*). + ([[F]]v) + = (1 - (1 - [[F]]v)) by (*BEGIN*)H3(*END*). + = (1 - [[(*BEGIN*)FNot F(*END*)]]v). + = (1 - [[ FNot G]]v) by H. + = (1 - (*BEGIN*)(1 - [[G]]v)(*END*)). + = [[G]]v by (*BEGIN*)H4(*END*). done. qed. @@ -556,7 +578,7 @@ Per dimostrare tale teorema è bene suddividere la prova in lemmi intermedi 1. lemma `negate_invert`, dimostrato per induzione su F, utilizzando `min_bool` - ∀F:Formula.∀v:ℕ→ℕ.[[ negate F ]]_v=[[ F ]]_(invert v). + ∀F:Formula.∀v:ℕ→ℕ.[[ negate F ]]v=[[ F ]]_(invert v). 2. lemma `negate_fun`, conseguenza di `negate_invert` @@ -605,7 +627,7 @@ theorem duality: ∀F1,F2:Formula.F1 ≡ F2 → dualize F1 ≡ dualize F2. the thesis becomes (dualize F1 ≡ dualize F2). by (*BEGIN*)negate_fun(*END*), H we proved (negate F1 ≡ negate F2) (H1). by (*BEGIN*)not_dualize_eq_negate(*END*), (*BEGIN*)equiv_rewrite(*END*), H1 we proved (FNot (dualize F1) ≡ negate F2) (H2). - by (*BEGIN*)not_dualize_eq_negate(*END*), (*BEGIN*)equiv_rewrite(*END*), H2 we proved (FNot (dualize F1) ≡ FNot (dualize F2)) (H3). + by (*BEGIN*)not_dualize_eq_negate(*END*), (*BEGIN*)equiv_rewrite(*END*), H2, equiv_sym we proved (FNot (dualize F1) ≡ FNot (dualize F2)) (H3). by (*BEGIN*)not_inj(*END*), H3 we proved (dualize F1 ≡ dualize F2) (H4). by H4 done. qed.