X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fformal_topology%2Fbasic_pairs.ma;h=0d51724de7114ad3eb7c2d3936856a13933ed313;hb=430d6307ae5776ed000a78358a2881cb88936c37;hp=5cc67a250878233200b20a6eed63f55b0f4915e7;hpb=be9826d87207e8dcf6eb152bd54417b5a9e80ab9;p=helm.git diff --git a/helm/software/matita/library/formal_topology/basic_pairs.ma b/helm/software/matita/library/formal_topology/basic_pairs.ma index 5cc67a250..0d51724de 100644 --- a/helm/software/matita/library/formal_topology/basic_pairs.ma +++ b/helm/software/matita/library/formal_topology/basic_pairs.ma @@ -12,16 +12,13 @@ (* *) (**************************************************************************) -include "datatypes/subsets.ma". -include "logic/cprop_connectives.ma". -include "formal_topology/categories.ma". +include "formal_topology/relations.ma". +include "datatypes/categories.ma". record basic_pair: Type ≝ - { carr1: Type; - carr2: Type; - concr: Ω \sup carr1; - form: Ω \sup carr2; - rel: binary_relation ?? concr form + { concr: REL; + form: REL; + rel: arrows1 ? concr form }. notation "x ⊩ y" with precedence 45 for @{'Vdash2 $x $y}. @@ -30,12 +27,10 @@ notation "⊩" with precedence 60 for @{'Vdash}. interpretation "basic pair relation" 'Vdash2 x y = (rel _ x y). interpretation "basic pair relation (non applied)" 'Vdash = (rel _). -alias symbol "eq" = "equal relation". -alias symbol "compose" = "binary relation composition". record relation_pair (BP1,BP2: basic_pair): Type ≝ - { concr_rel: binary_relation ?? (concr BP1) (concr BP2); - form_rel: binary_relation ?? (form BP1) (form BP2); - commute: concr_rel ∘ ⊩ = ⊩ ∘ form_rel + { concr_rel: arrows1 ? (concr BP1) (concr BP2); + form_rel: arrows1 ? (form BP1) (form BP2); + commute: ⊩ ∘ concr_rel = form_rel ∘ ⊩ }. notation "hvbox (r \sub \c)" with precedence 90 for @{'concr_rel $r}. @@ -44,27 +39,24 @@ notation "hvbox (r \sub \f)" with precedence 90 for @{'form_rel $r}. interpretation "concrete relation" 'concr_rel r = (concr_rel __ r). interpretation "formal relation" 'form_rel r = (form_rel __ r). - definition relation_pair_equality: - ∀o1,o2. equivalence_relation (relation_pair o1 o2). + ∀o1,o2. equivalence_relation1 (relation_pair o1 o2). intros; constructor 1; - [ apply (λr,r'. r \sub\c ∘ ⊩ = r' \sub\c ∘ ⊩); + [ apply (λr,r'. ⊩ ∘ r \sub\c = ⊩ ∘ r' \sub\c); | simplify; intros; - apply refl_equal_relations; + apply refl1; | simplify; - intros; - apply sym_equal_relations; - assumption + intros 2; + apply sym1; | simplify; - intros; - apply (trans_equal_relations ??????? H); - assumption + intros 3; + apply trans1; ] qed. -definition relation_pair_setoid: basic_pair → basic_pair → setoid. +definition relation_pair_setoid: basic_pair → basic_pair → setoid1. intros; constructor 1; [ apply (relation_pair b b1) @@ -72,13 +64,9 @@ definition relation_pair_setoid: basic_pair → basic_pair → setoid. ] qed. -definition eq' ≝ - λo1,o2.λr,r':relation_pair o1 o2.⊩ ∘ r \sub\f = ⊩ ∘ r' \sub\f. - -alias symbol "eq" = "setoid eq". -lemma eq_to_eq': ∀o1,o2.∀r,r': relation_pair_setoid o1 o2. r=r' → eq' ?? r r'. +lemma eq_to_eq': ∀o1,o2.∀r,r': relation_pair_setoid o1 o2. r=r' → r \sub\f ∘ ⊩ = r'\sub\f ∘ ⊩. intros 7 (o1 o2 r r' H c1 f2); - split; intro; + split; intro H1; [ lapply (fi ?? (commute ?? r c1 f2) H1) as H2; lapply (if ?? (H c1 f2) H2) as H3; apply (if ?? (commute ?? r' c1 f2) H3); @@ -87,97 +75,105 @@ lemma eq_to_eq': ∀o1,o2.∀r,r': relation_pair_setoid o1 o2. r=r' → eq' ?? r apply (if ?? (commute ?? r c1 f2) H3); ] qed. - -definition id: ∀o:basic_pair. relation_pair o o. +definition id_relation_pair: ∀o:basic_pair. relation_pair o o. intro; constructor 1; - [1,2: constructor 1; - intros; - apply (s=s1) - | simplify; intros; - split; - intro; - cases H; - cases H1; clear H H1; - [ exists [ apply y ] - split - [ rewrite > H2; assumption - | reflexivity ] - | exists [ apply x ] - split - [2: rewrite < H3; assumption - | reflexivity ]]] + [1,2: apply id1; + | lapply (id_neutral_right1 ? (concr o) ? (⊩)) as H; + lapply (id_neutral_left1 ?? (form o) (⊩)) as H1; + apply (.= H); + apply (H1 \sup -1);] qed. definition relation_pair_composition: - ∀o1,o2,o3. binary_morphism (relation_pair_setoid o1 o2) (relation_pair_setoid o2 o3) (relation_pair_setoid o1 o3). + ∀o1,o2,o3. binary_morphism1 (relation_pair_setoid o1 o2) (relation_pair_setoid o2 o3) (relation_pair_setoid o1 o3). intros; constructor 1; [ intros (r r1); constructor 1; - [ apply (r \sub\c ∘ r1 \sub\c) - | apply (r \sub\f ∘ r1 \sub\f) + [ apply (r1 \sub\c ∘ r \sub\c) + | apply (r1 \sub\f ∘ r \sub\f) | lapply (commute ?? r) as H; lapply (commute ?? r1) as H1; - apply (equal_morphism ???? (r\sub\c ∘ (r1\sub\c ∘ ⊩)) ? ((⊩ ∘ r\sub\f) ∘ r1\sub\f)); - [1,2: apply associative_composition] - apply (equal_morphism ???? (r\sub\c ∘ (⊩ ∘ r1\sub\f)) ? ((r\sub\c ∘ ⊩) ∘ r1\sub\f)); - [1,2: apply composition_morphism; first [assumption | apply refl_equal_relations] - | apply sym_equal_relations; - apply associative_composition - ]] + apply (.= ASSOC1); + apply (.= #‡H1); + apply (.= ASSOC1\sup -1); + apply (.= H‡#); + apply ASSOC1] | intros; - alias symbol "eq" = "equal relation". - change with (a\sub\c ∘ b\sub\c ∘ ⊩ = a'\sub\c ∘ b'\sub\c ∘ ⊩); - apply (equal_morphism ???? (a\sub\c ∘ (b\sub\c ∘ ⊩)) ? (a'\sub\c ∘ (b'\sub\c ∘ ⊩))); - [ apply associative_composition - | apply sym_equal_relations; apply associative_composition] - apply (equal_morphism ???? (a\sub\c ∘ (b'\sub\c ∘ ⊩)) ? (a' \sub \c∘(b' \sub \c∘⊩))); - [2: apply refl_equal_relations; - |1: apply composition_morphism; - [ apply refl_equal_relations - | assumption]] - apply (equal_morphism ???? (a\sub\c ∘ (⊩ ∘ b'\sub\f)) ? (a'\sub\c ∘ (⊩ ∘ b'\sub\f))); - [1,2: apply composition_morphism; - [1,3: apply refl_equal_relations - | apply (commute ?? b'); - | apply sym_equal_relations; apply (commute ?? b');]] - apply (equal_morphism ???? ((a\sub\c ∘ ⊩) ∘ b'\sub\f) ? ((a'\sub\c ∘ ⊩) ∘ b'\sub\f)); - [2: apply associative_composition - |1: apply sym_equal_relations; apply associative_composition] - apply composition_morphism; - [ assumption - | apply refl_equal_relations]] + change with (⊩ ∘ (b\sub\c ∘ a\sub\c) = ⊩ ∘ (b'\sub\c ∘ a'\sub\c)); + change in H with (⊩ ∘ a \sub\c = ⊩ ∘ a' \sub\c); + change in H1 with (⊩ ∘ b \sub\c = ⊩ ∘ b' \sub\c); + apply (.= ASSOC1); + apply (.= #‡H1); + apply (.= #‡(commute ?? b')); + apply (.= ASSOC1 \sup -1); + apply (.= H‡#); + apply (.= ASSOC1); + apply (.= #‡(commute ?? b')\sup -1); + apply (ASSOC1 \sup -1)] qed. - -definition BP: category. + +definition BP: category1. constructor 1; [ apply basic_pair | apply relation_pair_setoid - | apply id + | apply id_relation_pair | apply relation_pair_composition | intros; - change with (a12\sub\c ∘ a23\sub\c ∘ a34\sub\c ∘ ⊩ = - (a12\sub\c ∘ (a23\sub\c ∘ a34\sub\c) ∘ ⊩)); - apply composition_morphism; - [2: apply refl_equal_relations] - apply associative_composition + change with (⊩ ∘ (a34\sub\c ∘ (a23\sub\c ∘ a12\sub\c)) = + ⊩ ∘ ((a34\sub\c ∘ a23\sub\c) ∘ a12\sub\c)); + apply (ASSOC1‡#); | intros; - change with ((id o1)\sub\c ∘ a\sub\c ∘ ⊩ = a\sub\c ∘ ⊩); - apply composition_morphism; - [2: apply refl_equal_relations] - intros 2; unfold id; simplify; - split; intro; - [ cases H; cases H1; rewrite > H2; assumption - | exists; [assumption] split; [reflexivity| assumption]] + change with (⊩ ∘ (a\sub\c ∘ (id_relation_pair o1)\sub\c) = ⊩ ∘ a\sub\c); + apply ((id_neutral_right1 ????)‡#); | intros; - change with (a\sub\c ∘ (id o2)\sub\c ∘ ⊩ = a\sub\c ∘ ⊩); - apply composition_morphism; - [2: apply refl_equal_relations] - intros 2; unfold id; simplify; - split; intro; - [ cases H; cases H1; rewrite < H3; assumption - | exists; [assumption] split; [assumption|reflexivity]] - ] + change with (⊩ ∘ ((id_relation_pair o2)\sub\c ∘ a\sub\c) = ⊩ ∘ a\sub\c); + apply ((id_neutral_left1 ????)‡#);] +qed. + +definition BPext: ∀o: BP. form o ⇒ Ω \sup (concr o). + intros; constructor 1; + [ apply (ext ? ? (rel o)); + | intros; + apply (.= #‡H); + apply refl1] qed. + +definition BPextS: ∀o: BP. Ω \sup (form o) ⇒ Ω \sup (concr o) ≝ + λo.extS ?? (rel o). + +definition fintersects: ∀o: BP. binary_morphism1 (form o) (form o) (Ω \sup (form o)). + intros (o); constructor 1; + [ apply (λa,b: form o.{c | BPext o c ⊆ BPext o a ∩ BPext o b }); + intros; simplify; apply (.= (†H)‡#); apply refl1 + | intros; split; simplify; intros; + [ apply (. #‡((†H)‡(†H1))); assumption + | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]] +qed. + +interpretation "fintersects" 'fintersects U V = (fun1 ___ (fintersects _) U V). + +definition fintersectsS: + ∀o:BP. binary_morphism1 (Ω \sup (form o)) (Ω \sup (form o)) (Ω \sup (form o)). + intros (o); constructor 1; + [ apply (λo: basic_pair.λa,b: Ω \sup (form o).{c | BPext o c ⊆ BPextS o a ∩ BPextS o b }); + intros; simplify; apply (.= (†H)‡#); apply refl1 + | intros; split; simplify; intros; + [ apply (. #‡((†H)‡(†H1))); assumption + | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]] +qed. + +interpretation "fintersectsS" 'fintersects U V = (fun1 ___ (fintersectsS _) U V). + +definition relS: ∀o: BP. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP. + intros (o); constructor 1; + [ apply (λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y); + | intros; split; intros; cases H2; exists [1,3: apply w] + [ apply (. (#‡H1)‡(H‡#)); assumption + | apply (. (#‡H1 \sup -1)‡(H \sup -1‡#)); assumption]] +qed. + +interpretation "basic pair relation for subsets" 'Vdash2 x y = (fun1 (concr _) __ (relS _) x y). +interpretation "basic pair relation for subsets (non applied)" 'Vdash = (fun1 ___ (relS _)).