X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fformal_topology%2Fbasic_pairs.ma;h=ecf27345dc125d0957106ab57a58720415b8564a;hb=e880d6eab5e1700f4a625ddcd7d0fa8f0cce2dcc;hp=f19e39d2a4b0cfd9cfd6de7ef7692fefce1e05f6;hpb=dd7f52dfd7f80b80368661fce5b58b644c102d7b;p=helm.git diff --git a/helm/software/matita/library/formal_topology/basic_pairs.ma b/helm/software/matita/library/formal_topology/basic_pairs.ma index f19e39d2a..ecf27345d 100644 --- a/helm/software/matita/library/formal_topology/basic_pairs.ma +++ b/helm/software/matita/library/formal_topology/basic_pairs.ma @@ -13,47 +13,28 @@ (**************************************************************************) include "formal_topology/relations.ma". -include "datatypes/categories.ma". +include "formal_topology/notation.ma". -record basic_pair: Type ≝ - { concr: REL; - form: REL; - rel: arrows1 ? concr form - }. - -notation "x ⊩ y" with precedence 45 for @{'Vdash2 $x $y}. -notation "⊩" with precedence 60 for @{'Vdash}. +record basic_pair: Type1 ≝ { + concr: REL; form: REL; rel: concr ⇒_\r1 form +}. -interpretation "basic pair relation" 'Vdash2 x y = (rel _ x y). -interpretation "basic pair relation (non applied)" 'Vdash = (rel _). +interpretation "basic pair relation" 'Vdash2 x y c = (fun21 ??? (rel c) x y). +interpretation "basic pair relation (non applied)" 'Vdash c = (rel c). -record relation_pair (BP1,BP2: basic_pair): Type ≝ - { concr_rel: arrows1 ? (concr BP1) (concr BP2); - form_rel: arrows1 ? (form BP1) (form BP2); - commute: concr_rel ∘ ⊩ = ⊩ ∘ form_rel +record relation_pair (BP1,BP2: basic_pair): Type1 ≝ { + concr_rel: (concr BP1) ⇒_\r1 (concr BP2); form_rel: (form BP1) ⇒_\r1 (form BP2); + commute: comp1 REL ??? concr_rel (rel ?) =_1 form_rel ∘ ⊩ }. -notation "hvbox (r \sub \c)" with precedence 90 for @{'concr_rel $r}. -notation "hvbox (r \sub \f)" with precedence 90 for @{'form_rel $r}. +interpretation "concrete relation" 'concr_rel r = (concr_rel ?? r). +interpretation "formal relation" 'form_rel r = (form_rel ?? r). -interpretation "concrete relation" 'concr_rel r = (concr_rel __ r). -interpretation "formal relation" 'form_rel r = (form_rel __ r). - -definition relation_pair_equality: - ∀o1,o2. equivalence_relation1 (relation_pair o1 o2). - intros; - constructor 1; - [ apply (λr,r'. r \sub\c ∘ ⊩ = r' \sub\c ∘ ⊩); - | simplify; - intros; - apply refl1; - | simplify; - intros 2; - apply sym1; - | simplify; - intros 3; - apply trans1; - ] +definition relation_pair_equality: ∀o1,o2. equivalence_relation1 (relation_pair o1 o2). + intros; constructor 1; [ apply (λr,r'. ⊩ ∘ r \sub\c = ⊩ ∘ r' \sub\c); + | simplify; intros; apply refl1; + | simplify; intros 2; apply sym1; + | simplify; intros 3; apply trans1; ] qed. definition relation_pair_setoid: basic_pair → basic_pair → setoid1. @@ -64,111 +45,180 @@ definition relation_pair_setoid: basic_pair → basic_pair → setoid1. ] qed. -lemma eq_to_eq': ∀o1,o2.∀r,r': relation_pair_setoid o1 o2. r=r' → ⊩ \circ r \sub\f = ⊩ \circ r'\sub\f. - intros 7 (o1 o2 r r' H c1 f2); - split; intro H1; - [ lapply (fi ?? (commute ?? r c1 f2) H1) as H2; - lapply (if ?? (H c1 f2) H2) as H3; - apply (if ?? (commute ?? r' c1 f2) H3); - | lapply (fi ?? (commute ?? r' c1 f2) H1) as H2; - lapply (fi ?? (H c1 f2) H2) as H3; - apply (if ?? (commute ?? r c1 f2) H3); - ] +definition relation_pair_of_relation_pair_setoid : + ∀P,Q. relation_pair_setoid P Q → relation_pair P Q ≝ λP,Q,x.x. +coercion relation_pair_of_relation_pair_setoid. + +alias symbol "compose" (instance 1) = "category1 composition". +lemma eq_to_eq': + ∀o1,o2.∀r,r':relation_pair_setoid o1 o2. r =_1 r' → r \sub\f ∘ ⊩ =_1 r'\sub\f ∘ ⊩. + intros 5 (o1 o2 r r' H); + apply (.= (commute ?? r)^-1); + change in H with (⊩ ∘ r \sub\c = ⊩ ∘ r' \sub\c); + apply rule (.= H); + apply (commute ?? r'). qed. definition id_relation_pair: ∀o:basic_pair. relation_pair o o. intro; constructor 1; [1,2: apply id1; - | lapply (id_neutral_left1 ? (concr o) ? (⊩)) as H; - lapply (id_neutral_right1 ?? (form o) (⊩)) as H1; + | lapply (id_neutral_right1 ? (concr o) ? (⊩)) as H; + lapply (id_neutral_left1 ?? (form o) (⊩)) as H1; apply (.= H); - apply (H1 \sup -1);] + apply (H1^-1);] qed. -definition relation_pair_composition: - ∀o1,o2,o3. binary_morphism1 (relation_pair_setoid o1 o2) (relation_pair_setoid o2 o3) (relation_pair_setoid o1 o3). - intros; - constructor 1; - [ intros (r r1); +lemma relation_pair_composition: + ∀o1,o2,o3: basic_pair. + relation_pair_setoid o1 o2 → relation_pair_setoid o2 o3 → relation_pair_setoid o1 o3. +intros 3 (o1 o2 o3); + intros (r r1); constructor 1; - [ apply (r \sub\c ∘ r1 \sub\c) - | apply (r \sub\f ∘ r1 \sub\f) + [ apply (r1 \sub\c ∘ r \sub\c) + | apply (r1 \sub\f ∘ r \sub\f) | lapply (commute ?? r) as H; lapply (commute ?? r1) as H1; - apply (.= ASSOC1); + alias symbol "trans" = "trans1". + alias symbol "assoc" = "category1 assoc". + apply (.= ASSOC); apply (.= #‡H1); - apply (.= ASSOC1\sup -1); + alias symbol "invert" = "setoid1 symmetry". + apply (.= ASSOC ^ -1); apply (.= H‡#); - apply ASSOC1] - | intros; - change with (a\sub\c ∘ b\sub\c ∘ ⊩ = a'\sub\c ∘ b'\sub\c ∘ ⊩); - change in H with (a \sub\c ∘ ⊩ = a' \sub\c ∘ ⊩); - change in H1 with (b \sub\c ∘ ⊩ = b' \sub\c ∘ ⊩); - apply (.= ASSOC1); - apply (.= #‡H1); + apply ASSOC] +qed. + +lemma relation_pair_composition_is_morphism: + ∀o1,o2,o3: basic_pair. + ∀a,a':relation_pair_setoid o1 o2. + ∀b,b':relation_pair_setoid o2 o3. + a=a' → b=b' → + relation_pair_composition o1 o2 o3 a b + = relation_pair_composition o1 o2 o3 a' b'. +intros 3 (o1 o2 o3); + intros; + change with (⊩ ∘ (b\sub\c ∘ a\sub\c) = ⊩ ∘ (b'\sub\c ∘ a'\sub\c)); + change in e with (⊩ ∘ a \sub\c = ⊩ ∘ a' \sub\c); + change in e1 with (⊩ ∘ b \sub\c = ⊩ ∘ b' \sub\c); + apply (.= ASSOC); + apply (.= #‡e1); apply (.= #‡(commute ?? b')); - apply (.= ASSOC1 \sup -1); - apply (.= H‡#); - apply (.= ASSOC1); - apply (.= #‡(commute ?? b')\sup -1); - apply (ASSOC1 \sup -1)] + apply (.= ASSOC ^ -1); + apply (.= e‡#); + apply (.= ASSOC); + apply (.= #‡(commute ?? b')^-1); + apply (ASSOC ^ -1); +qed. + +definition relation_pair_composition_morphism: + ∀o1,o2,o3. binary_morphism1 (relation_pair_setoid o1 o2) (relation_pair_setoid o2 o3) (relation_pair_setoid o1 o3). + intros; + constructor 1; + [ apply relation_pair_composition; + | apply relation_pair_composition_is_morphism;] +qed. + +lemma relation_pair_composition_morphism_assoc: +Πo1:basic_pair +.Πo2:basic_pair + .Πo3:basic_pair + .Πo4:basic_pair + .Πa12:relation_pair_setoid o1 o2 + .Πa23:relation_pair_setoid o2 o3 + .Πa34:relation_pair_setoid o3 o4 + .relation_pair_composition_morphism o1 o3 o4 + (relation_pair_composition_morphism o1 o2 o3 a12 a23) a34 + =relation_pair_composition_morphism o1 o2 o4 a12 + (relation_pair_composition_morphism o2 o3 o4 a23 a34). + intros; + change with (⊩ ∘ (a34\sub\c ∘ (a23\sub\c ∘ a12\sub\c)) = + ⊩ ∘ ((a34\sub\c ∘ a23\sub\c) ∘ a12\sub\c)); + alias symbol "refl" = "refl1". + alias symbol "prop2" = "prop21". + apply (ASSOC‡#); +qed. + +lemma relation_pair_composition_morphism_respects_id: + ∀o1,o2:basic_pair.∀a:relation_pair_setoid o1 o2. + relation_pair_composition_morphism o1 o1 o2 (id_relation_pair o1) a=a. + intros; + change with (⊩ ∘ (a\sub\c ∘ (id_relation_pair o1)\sub\c) = ⊩ ∘ a\sub\c); + apply ((id_neutral_right1 ????)‡#); qed. +lemma relation_pair_composition_morphism_respects_id_r: + ∀o1,o2:basic_pair.∀a:relation_pair_setoid o1 o2. + relation_pair_composition_morphism o1 o2 o2 a (id_relation_pair o2)=a. + intros; + change with (⊩ ∘ ((id_relation_pair o2)\sub\c ∘ a\sub\c) = ⊩ ∘ a\sub\c); + apply ((id_neutral_left1 ????)‡#); +qed. + definition BP: category1. constructor 1; [ apply basic_pair | apply relation_pair_setoid | apply id_relation_pair - | apply relation_pair_composition - | intros; - change with (a12\sub\c ∘ a23\sub\c ∘ a34\sub\c ∘ ⊩ = - (a12\sub\c ∘ (a23\sub\c ∘ a34\sub\c) ∘ ⊩)); - apply (ASSOC1‡#); - | intros; - change with ((id_relation_pair o1)\sub\c ∘ a\sub\c ∘ ⊩ = a\sub\c ∘ ⊩); - apply ((id_neutral_left1 ????)‡#); + | apply relation_pair_composition_morphism + | apply relation_pair_composition_morphism_assoc; + | apply relation_pair_composition_morphism_respects_id; + | apply relation_pair_composition_morphism_respects_id_r;] +qed. + +definition basic_pair_of_BP : objs1 BP → basic_pair ≝ λx.x. +coercion basic_pair_of_BP. + +definition relation_pair_setoid_of_arrows1_BP : + ∀P,Q. arrows1 BP P Q → relation_pair_setoid P Q ≝ λP,Q,x.x. +coercion relation_pair_setoid_of_arrows1_BP. + +(* +definition BPext: ∀o: BP. (form o) ⇒_1 Ω^(concr o). + intros; constructor 1; + [ apply (ext ? ? (rel o)); | intros; - change with (a\sub\c ∘ (id_relation_pair o2)\sub\c ∘ ⊩ = a\sub\c ∘ ⊩); - apply ((id_neutral_right1 ????)‡#); - ] + apply (.= #‡e); + apply refl1] qed. -definition BPext: ∀o: BP. form o ⇒ Ω \sup (concr o) ≝ λo.ext ? ? (rel o). - -definition BPextS: ∀o: BP. Ω \sup (form o) ⇒ Ω \sup (concr o) ≝ - λo.extS ?? (rel o). +definition BPextS: ∀o: BP. Ω^(form o) ⇒_1 Ω^(concr o). + intros; constructor 1; + [ apply (minus_image ?? (rel o)); + | intros; apply (#‡e); ] +qed. -definition fintersects: ∀o: BP. binary_morphism1 (form o) (form o) (Ω \sup (form o)). +definition fintersects: ∀o: BP. (form o) × (form o) ⇒_1 Ω^(form o). intros (o); constructor 1; [ apply (λa,b: form o.{c | BPext o c ⊆ BPext o a ∩ BPext o b }); - intros; simplify; apply (.= (†H)‡#); apply refl1 + intros; simplify; apply (.= (†e)‡#); apply refl1 | intros; split; simplify; intros; - [ apply (. #‡((†H)‡(†H1))); assumption - | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]] + [ apply (. #‡((†e^-1)‡(†e1^-1))); assumption + | apply (. #‡((†e)‡(†e1))); assumption]] qed. -interpretation "fintersects" 'fintersects U V = (fun1 ___ (fintersects _) U V). +interpretation "fintersects" 'fintersects U V = (fun21 ??? (fintersects ?) U V). definition fintersectsS: - ∀o:BP. binary_morphism1 (Ω \sup (form o)) (Ω \sup (form o)) (Ω \sup (form o)). + ∀o:BP. Ω^(form o) × Ω^(form o) ⇒_1 Ω^(form o). intros (o); constructor 1; - [ apply (λo: basic_pair.λa,b: Ω \sup (form o).{c | BPext o c ⊆ BPextS o a ∩ BPextS o b }); - intros; simplify; apply (.= (†H)‡#); apply refl1 + [ apply (λo: basic_pair.λa,b: Ω^(form o).{c | BPext o c ⊆ BPextS o a ∩ BPextS o b }); + intros; simplify; apply (.= (†e)‡#); apply refl1 | intros; split; simplify; intros; - [ apply (. #‡((†H)‡(†H1))); assumption - | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]] + [ apply (. #‡((†e^-1)‡(†e1^-1))); assumption + | apply (. #‡((†e)‡(†e1))); assumption]] qed. -interpretation "fintersectsS" 'fintersects U V = (fun1 ___ (fintersectsS _) U V). +interpretation "fintersectsS" 'fintersects U V = (fun21 ??? (fintersectsS ?) U V). -definition relS: ∀o: BP. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP. +definition relS: ∀o: BP. (concr o) × Ω^(form o) ⇒_1 CPROP. intros (o); constructor 1; - [ apply (λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y); - | intros; split; intros; cases H2; exists [1,3: apply w] - [ apply (. (#‡H1)‡(H‡#)); assumption - | apply (. (#‡H1 \sup -1)‡(H \sup -1‡#)); assumption]] + [ apply (λx:concr o.λS: Ω^(form o).∃y:form o.y ∈ S ∧ x ⊩⎽o y); + | intros; split; intros; cases e2; exists [1,3: apply w] + [ apply (. (#‡e1^-1)‡(e^-1‡#)); assumption + | apply (. (#‡e1)‡(e‡#)); assumption]] qed. -interpretation "basic pair relation for subsets" 'Vdash2 x y = (fun1 (concr _) __ (relS _) x y). -interpretation "basic pair relation for subsets (non applied)" 'Vdash = (fun1 ___ (relS _)). +interpretation "basic pair relation for subsets" 'Vdash2 x y c = (fun21 (concr ?) ?? (relS c) x y). +interpretation "basic pair relation for subsets (non applied)" 'Vdash c = (fun21 ??? (relS c)). +*)