X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fformal_topology%2Fbasic_topologies.ma;h=0177afb63e9cea4035b289b1d8024dce1e795c32;hb=070b44c9c2344967ca8c4531909614a0d4da2fbe;hp=749089a89636c6b974f4b4f109b3eb80b434be26;hpb=121d6d7cd72ae57a4ed838ef02ae98f3bafb6e9d;p=helm.git diff --git a/helm/software/matita/library/formal_topology/basic_topologies.ma b/helm/software/matita/library/formal_topology/basic_topologies.ma index 749089a89..0177afb63 100644 --- a/helm/software/matita/library/formal_topology/basic_topologies.ma +++ b/helm/software/matita/library/formal_topology/basic_topologies.ma @@ -13,85 +13,21 @@ (**************************************************************************) include "formal_topology/relations.ma". -include "datatypes/categories.ma". +include "formal_topology/saturations.ma". -definition is_saturation ≝ - λC:REL.λA:unary_morphism (Ω \sup C) (Ω \sup C). - ∀U,V. (U ⊆ A V) = (A U ⊆ A V). - -definition is_reduction ≝ - λC:REL.λJ:unary_morphism (Ω \sup C) (Ω \sup C). - ∀U,V. (J U ⊆ V) = (J U ⊆ J V). - -record basic_topology: Type ≝ +record basic_topology: Type1 ≝ { carrbt:> REL; - A: unary_morphism (Ω \sup carrbt) (Ω \sup carrbt); - J: unary_morphism (Ω \sup carrbt) (Ω \sup carrbt); + A: Ω^carrbt ⇒_1 Ω^carrbt; + J: Ω^carrbt ⇒_1 Ω^carrbt; A_is_saturation: is_saturation ? A; J_is_reduction: is_reduction ? J; - compatibility: ∀U,V. (A U ≬ J V) = (U ≬ J V) + compatibility: ∀U,V. (A U ≬ J V) =_1 (U ≬ J V) }. -(* the same as ⋄ for a basic pair *) -definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). - intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S}); - intros; simplify; split; intro; cases H1; exists [1,3: apply w] - [ apply (. (#‡H)‡#); assumption - | apply (. (#‡H \sup -1)‡#); assumption] - | intros; split; simplify; intros; cases H2; exists [1,3: apply w] - [ apply (. #‡(#‡H1)); cases x; split; try assumption; - apply (if ?? (H ??)); assumption - | apply (. #‡(#‡H1 \sup -1)); cases x; split; try assumption; - apply (if ?? (H \sup -1 ??)); assumption]] -qed. - -(* the same as □ for a basic pair *) -definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). - intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S}); - intros; simplify; split; intros; apply H1; - [ apply (. #‡H \sup -1); assumption - | apply (. #‡H); assumption] - | intros; split; simplify; intros; [ apply (. #‡H1); | apply (. #‡H1 \sup -1)] - apply H2; [ apply (if ?? (H \sup -1 ??)); | apply (if ?? (H ??)) ] assumption] -qed. - -(* minus_image is the same as ext *) - -theorem image_id: ∀o,U. image o o (id1 REL o) U = U. - intros; unfold image; simplify; split; simplify; intros; - [ change with (a ∈ U); - cases H; cases x; change in f with (eq1 ? w a); apply (. f‡#); assumption - | change in f with (a ∈ U); - exists; [apply a] split; [ change with (a = a); apply refl | assumption]] -qed. - -theorem minus_star_image_id: ∀o,U. minus_star_image o o (id1 REL o) U = U. - intros; unfold minus_star_image; simplify; split; simplify; intros; - [ change with (a ∈ U); apply H; change with (a=a); apply refl - | change in f1 with (eq1 ? x a); apply (. f1 \sup -1‡#); apply f] -qed. - -theorem image_comp: ∀A,B,C,r,s,X. image A C (r ∘ s) X = image B C r (image A B s X). - intros; unfold image; simplify; split; simplify; intros; cases H; clear H; cases x; - clear x; [ cases f; clear f; | cases f1; clear f1 ] - exists; try assumption; cases x; clear x; split; try assumption; - exists; try assumption; split; assumption. -qed. - -theorem minus_star_image_comp: - ∀A,B,C,r,s,X. - minus_star_image A C (r ∘ s) X = minus_star_image B C r (minus_star_image A B s X). - intros; unfold minus_star_image; simplify; split; simplify; intros; whd; intros; - [ apply H; exists; try assumption; split; assumption - | change with (x ∈ X); cases f; cases x1; apply H; assumption] -qed. - -record continuous_relation (S,T: basic_topology) : Type ≝ - { cont_rel:> arrows1 ? S T; - reduced: ∀U. U = J ? U → image ?? cont_rel U = J ? (image ?? cont_rel U); - saturated: ∀U. U = A ? U → minus_star_image ?? cont_rel U = A ? (minus_star_image ?? cont_rel U) +record continuous_relation (S,T: basic_topology) : Type1 ≝ + { cont_rel:> S ⇒_\r1 T; + reduced: ∀U. U =_1 J ? U → image_coercion ?? cont_rel U =_1 J ? (image_coercion ?? cont_rel U); + saturated: ∀U. U =_1 A ? U → (cont_rel)⎻* U = _1A ? ((cont_rel)⎻* U) }. definition continuous_relation_setoid: basic_topology → basic_topology → setoid1. @@ -100,15 +36,89 @@ definition continuous_relation_setoid: basic_topology → basic_topology → set | constructor 1; [ apply (λr,s:continuous_relation S T.∀b. A ? (ext ?? r b) = A ? (ext ?? s b)); | simplify; intros; apply refl1; - | simplify; intros; apply sym1; apply H - | simplify; intros; apply trans1; [2: apply H |3: apply H1; |1: skip]]] + | simplify; intros (x y H); apply sym1; apply H + | simplify; intros; apply trans1; [2: apply f |3: apply f1; |1: skip]]] qed. -definition cont_rel': ∀S,T: basic_topology. continuous_relation_setoid S T → arrows1 ? S T ≝ cont_rel. - -coercion cont_rel'. +definition continuos_relation_of_continuous_relation_setoid : + ∀P,Q. continuous_relation_setoid P Q → continuous_relation P Q ≝ λP,Q,x.x. +coercion continuos_relation_of_continuous_relation_setoid. +axiom continuous_relation_eq': + ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. + a = a' → ∀X.a⎻* (A o1 X) = a'⎻* (A o1 X). (* + intros; split; intro; unfold minus_star_image; simplify; intros; + [ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] + lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; + cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption] + lapply (fi ?? (A_is_saturation ???) Hcut); + apply (Hletin1 x); change with (x ∈ ext ?? a' a1); split; simplify; + [ apply I | assumption ] + | cut (ext ?? a' a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] + lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; + cut (A ? (ext ?? a a1) ⊆ A ? X); [2: apply (. (H ?)\sup -1‡#); assumption] + lapply (fi ?? (A_is_saturation ???) Hcut); + apply (Hletin1 x); change with (x ∈ ext ?? a a1); split; simplify; + [ apply I | assumption ]] +qed.*) + +lemma continuous_relation_eq_inv': + ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. + (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → a=a'. + intros 6; + cut (∀a,a': continuous_relation_setoid o1 o2. + (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → + ∀V:o2. A ? (ext ?? a' V) ⊆ A ? (ext ?? a V)); + [2: clear b f a' a; intros; + lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip] + (* fundamental adjunction here! to be taken out *) + cut (∀V:Ω^o2.V ⊆ a⎻* (A ? (extS ?? a V))); + [2: intro; intros 2; unfold minus_star_image; simplify; intros; + apply (Hletin V1 x); whd; split; [ exact I | exists; [apply a1] split; assumption]] + clear Hletin; + cut (∀V:Ω^o2.V ⊆ a'⎻* (A ? (extS ?? a V))); + [2: intro; apply (. #‡(f ?)^-1); apply Hcut] clear f Hcut; + (* second half of the fundamental adjunction here! to be taken out too *) + intro; lapply (Hcut1 {(V)}); clear Hcut1; + unfold minus_star_image in Hletin; unfold singleton in Hletin; simplify in Hletin; + whd in Hletin; whd in Hletin:(?→?→%); simplify in Hletin; + apply (if ?? (A_is_saturation ???)); + intros 2 (x H); lapply (Hletin V ? x ?); + [ apply refl | unfold foo; apply H; ] + change with (x ∈ A ? (ext ?? a V)); + apply (. #‡(†(extS_singleton ????)^-1)); + assumption;] + split; apply Hcut; [2: assumption | intro; apply sym1; apply f] +qed. + +definition continuous_relation_comp: + ∀o1,o2,o3. + continuous_relation_setoid o1 o2 → + continuous_relation_setoid o2 o3 → + continuous_relation_setoid o1 o3. + intros (o1 o2 o3 r s); constructor 1; + [ alias symbol "compose" (instance 1) = "category1 composition". +apply (s ∘ r) + | intros; + apply sym1; + (*change in ⊢ (? ? ? (? ? ? ? %) ?) with (image_coercion ?? (s ∘ r) U);*) + apply (.= †(image_comp ??????)); + apply (.= (reduced ?? s (image_coercion ?? r U) ?)^-1); + [ apply (.= (reduced ?????)); [ assumption | apply refl1 ] + | change in ⊢ (? ? ? % ?) with ((image_coercion ?? s ∘ image_coercion ?? r) U); + apply (.= (image_comp ??????)^-1); + apply refl1] + | intros; + apply sym1; + apply (.= †(minus_star_image_comp ??? s r ?)); + apply (.= (saturated ?? s ((r)⎻* U) ?)^-1); + [ apply (.= (saturated ?????)); [ assumption | apply refl1 ] + | change in ⊢ (? ? ? % ?) with ((s⎻* ∘ r⎻* ) U); + apply (.= (minus_star_image_comp ??????)^-1); + apply refl1]] +qed. + definition BTop: category1. constructor 1; [ apply basic_topology @@ -128,32 +138,74 @@ definition BTop: category1. apply sym1; assumption] | intros; constructor 1; - [ intros (r s); constructor 1; - [ apply (s ∘ r) - | intros; - apply sym1; - apply (.= †(image_comp ??????)); - apply (.= (reduced ?????)\sup -1); - [ apply (.= (reduced ?????)); [ assumption | apply refl1 ] - | apply (.= (image_comp ??????)\sup -1); - apply refl1] - | intros; - apply sym1; - apply (.= †(minus_star_image_comp ??????)); - apply (.= (saturated ?????)\sup -1); - [ apply (.= (saturated ?????)); [ assumption | apply refl1 ] - | apply (.= (minus_star_image_comp ??????)\sup -1); - apply refl1]] - | intros; simplify; intro; simplify; whd in H H1; - apply (.= †(ext_comp ???)); - ] - | intros; simplify; intro; simplify; - apply (.= †(ASSOC1‡#)); + [ apply continuous_relation_comp; + | intros; simplify; intro x; simplify; + lapply depth=0 (continuous_relation_eq' ???? e) as H'; + lapply depth=0 (continuous_relation_eq' ???? e1) as H1'; + letin K ≝ (λX.H1' ((a)⎻* (A ? X))); clearbody K; + cut (∀X:Ω \sup o1. + (b)⎻* (A o2 ((a)⎻* (A o1 X))) + =_1 (b')⎻* (A o2 ((a')⎻* (A o1 X)))); + [2: intro; apply sym1; + apply (.= (†(†((H' X)^-1)))); apply sym1; apply (K X);] + clear K H' H1'; +alias symbol "powerset" (instance 5) = "powerset low". +alias symbol "compose" (instance 2) = "category1 composition". +cut (∀X:Ω^o1. + ((b ∘ a))⎻* (A o1 X) =_1 ((b'∘a'))⎻* (A o1 X)); + [2: intro; unfold foo; + apply (.= (minus_star_image_comp ??????)); + change in ⊢ (? ? ? % ?) with ((b)⎻* ((a)⎻* (A o1 X))); + apply (.= †(saturated ?????)); + [ apply ((saturation_idempotent ????)^-1); apply A_is_saturation ] + apply sym1; + apply (.= (minus_star_image_comp ??????)); + change in ⊢ (? ? ? % ?) with ((b')⎻* ((a')⎻* (A o1 X))); + apply (.= †(saturated ?????)); + [ apply ((saturation_idempotent ????)^-1); apply A_is_saturation ] + apply ((Hcut X)^-1)] + clear Hcut; generalize in match x; clear x; + apply (continuous_relation_eq_inv'); + apply Hcut1;] + | intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify; + alias symbol "trans" (instance 1) = "trans1". +alias symbol "refl" (instance 5) = "refl1". +alias symbol "prop2" (instance 3) = "prop21". +alias symbol "prop1" (instance 2) = "prop11". +alias symbol "assoc" (instance 4) = "category1 assoc". +apply (.= †(ASSOC‡#)); apply refl1 - | intros; simplify; intro; simplify; + | intros; simplify; intro; unfold continuous_relation_comp; simplify; apply (.= †((id_neutral_right1 ????)‡#)); apply refl1 | intros; simplify; intro; simplify; apply (.= †((id_neutral_left1 ????)‡#)); apply refl1] -qed.*) \ No newline at end of file +qed. + +(* +(*CSC: unused! *) +(* this proof is more logic-oriented than set/lattice oriented *) +theorem continuous_relation_eqS: + ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2. + a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X). + intros; + cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y); + [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split; + try assumption; split; assumption] + cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y)); + [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption; + apply (. #‡(H1 ?)); + apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x); + assumption;] clear Hcut; + split; apply (if ?? (A_is_saturation ???)); intros 2; + [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)] + cases Hletin; clear Hletin; cases x; clear x; + cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X); + [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption; + exists [1,3: apply w] split; assumption;] + cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X)); + [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;] + apply Hcut2; assumption. +qed. +*)