X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fformal_topology%2Fbasic_topologies.ma;h=36a0d24c86a1593887c428a494b765b1c9ce2390;hb=c96d1f2066d37b84a34412f7c49fb3e4f54bd9a2;hp=92f4cdf4659106db599aa821a93979980d7e9909;hpb=f386b970edc5798769c96e44f5c9ab30efa06605;p=helm.git diff --git a/helm/software/matita/library/formal_topology/basic_topologies.ma b/helm/software/matita/library/formal_topology/basic_topologies.ma index 92f4cdf46..36a0d24c8 100644 --- a/helm/software/matita/library/formal_topology/basic_topologies.ma +++ b/helm/software/matita/library/formal_topology/basic_topologies.ma @@ -14,39 +14,7 @@ include "formal_topology/relations.ma". include "datatypes/categories.ma". - -definition is_saturation ≝ - λC:REL.λA:unary_morphism (Ω \sup C) (Ω \sup C). - ∀U,V. (U ⊆ A V) = (A U ⊆ A V). - -definition is_reduction ≝ - λC:REL.λJ:unary_morphism (Ω \sup C) (Ω \sup C). - ∀U,V. (J U ⊆ V) = (J U ⊆ J V). - -theorem subseteq_refl: ∀A.∀S:Ω \sup A.S ⊆ S. - intros 4; assumption. -qed. - -theorem subseteq_trans: ∀A.∀S1,S2,S3: Ω \sup A. S1 ⊆ S2 → S2 ⊆ S3 → S1 ⊆ S3. - intros; apply transitive_subseteq_operator; [apply S2] assumption. -qed. - -theorem saturation_expansive: ∀C,A. is_saturation C A → ∀U. U ⊆ A U. - intros; apply (fi ?? (H ??)); apply subseteq_refl. -qed. - -theorem saturation_monotone: - ∀C,A. is_saturation C A → - ∀U,V. U ⊆ V → A U ⊆ A V. - intros; apply (if ?? (H ??)); apply subseteq_trans; [apply V|3: apply saturation_expansive ] - assumption. -qed. - -theorem saturation_idempotent: ∀C,A. is_saturation C A → ∀U. A (A U) = A U. - intros; split; - [ apply (if ?? (H ??)); apply subseteq_refl - | apply saturation_expansive; assumption] -qed. +include "formal_topology/saturations_reductions.ma". record basic_topology: Type ≝ { carrbt:> REL; @@ -57,62 +25,6 @@ record basic_topology: Type ≝ compatibility: ∀U,V. (A U ≬ J V) = (U ≬ J V) }. -(* the same as ⋄ for a basic pair *) -definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). - intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S}); - intros; simplify; split; intro; cases H1; exists [1,3: apply w] - [ apply (. (#‡H)‡#); assumption - | apply (. (#‡H \sup -1)‡#); assumption] - | intros; split; simplify; intros; cases H2; exists [1,3: apply w] - [ apply (. #‡(#‡H1)); cases x; split; try assumption; - apply (if ?? (H ??)); assumption - | apply (. #‡(#‡H1 \sup -1)); cases x; split; try assumption; - apply (if ?? (H \sup -1 ??)); assumption]] -qed. - -(* the same as □ for a basic pair *) -definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). - intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S}); - intros; simplify; split; intros; apply H1; - [ apply (. #‡H \sup -1); assumption - | apply (. #‡H); assumption] - | intros; split; simplify; intros; [ apply (. #‡H1); | apply (. #‡H1 \sup -1)] - apply H2; [ apply (if ?? (H \sup -1 ??)); | apply (if ?? (H ??)) ] assumption] -qed. - -(* minus_image is the same as ext *) - -theorem image_id: ∀o,U. image o o (id1 REL o) U = U. - intros; unfold image; simplify; split; simplify; intros; - [ change with (a ∈ U); - cases H; cases x; change in f with (eq1 ? w a); apply (. f‡#); assumption - | change in f with (a ∈ U); - exists; [apply a] split; [ change with (a = a); apply refl | assumption]] -qed. - -theorem minus_star_image_id: ∀o,U. minus_star_image o o (id1 REL o) U = U. - intros; unfold minus_star_image; simplify; split; simplify; intros; - [ change with (a ∈ U); apply H; change with (a=a); apply refl - | change in f1 with (eq1 ? x a); apply (. f1 \sup -1‡#); apply f] -qed. - -theorem image_comp: ∀A,B,C,r,s,X. image A C (r ∘ s) X = image B C r (image A B s X). - intros; unfold image; simplify; split; simplify; intros; cases H; clear H; cases x; - clear x; [ cases f; clear f; | cases f1; clear f1 ] - exists; try assumption; cases x; clear x; split; try assumption; - exists; try assumption; split; assumption. -qed. - -theorem minus_star_image_comp: - ∀A,B,C,r,s,X. - minus_star_image A C (r ∘ s) X = minus_star_image B C r (minus_star_image A B s X). - intros; unfold minus_star_image; simplify; split; simplify; intros; whd; intros; - [ apply H; exists; try assumption; split; assumption - | change with (x ∈ X); cases f; cases x1; apply H; assumption] -qed. - record continuous_relation (S,T: basic_topology) : Type ≝ { cont_rel:> arrows1 ? S T; reduced: ∀U. U = J ? U → image ?? cont_rel U = J ? (image ?? cont_rel U); @@ -137,46 +49,6 @@ definition cont_rel'': ∀S,T: basic_topology. continuous_relation_setoid S T coercion cont_rel''. -theorem ext_comp: - ∀o1,o2,o3: REL. - ∀a: arrows1 ? o1 o2. - ∀b: arrows1 ? o2 o3. - ∀x. ext ?? (b∘a) x = extS ?? a (ext ?? b x). - intros; - unfold ext; unfold extS; simplify; split; intro; simplify; intros; - cases f; clear f; split; try assumption; - [ cases f2; clear f2; cases x1; clear x1; exists; [apply w] split; - [1: split] assumption; - | cases H; clear H; cases x1; clear x1; exists [apply w]; split; - [2: cases f] assumption] -qed. - -(* -(* this proof is more logic-oriented than set/lattice oriented *) -theorem continuous_relation_eqS: - ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2. - a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X). - intros; - cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y); - [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split; - try assumption; split; assumption] - cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y)); - [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption; - apply (. #‡(H1 ?)); - apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x); - assumption;] clear Hcut; - split; apply (if ?? (A_is_saturation ???)); intros 2; - [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)] - cases Hletin; clear Hletin; cases x; clear x; - cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X); - [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption; - exists [1,3: apply w] split; assumption;] - cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X)); - [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;] - apply Hcut2; assumption. -qed. -*) - theorem continuous_relation_eq': ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. a = a' → ∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X). @@ -195,15 +67,6 @@ theorem continuous_relation_eq': [ apply I | assumption ]] qed. -theorem extS_singleton: - ∀o1,o2.∀a:arrows1 ? o1 o2.∀x.extS o1 o2 a (singleton o2 x) = ext o1 o2 a x. - intros; unfold extS; unfold ext; unfold singleton; simplify; - split; intros 2; simplify; cases f; split; try assumption; - [ cases H; cases x1; change in f2 with (eq1 ? x w); apply (. #‡f2 \sup -1); - assumption - | exists; try assumption; split; try assumption; change with (x = x); apply refl] -qed. - theorem continuous_relation_eq_inv': ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → a=a'. @@ -308,4 +171,29 @@ definition BTop: category1. | intros; simplify; intro; simplify; apply (.= †((id_neutral_left1 ????)‡#)); apply refl1] -qed. \ No newline at end of file +qed. + +(*CSC: unused! *) +(* this proof is more logic-oriented than set/lattice oriented *) +theorem continuous_relation_eqS: + ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2. + a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X). + intros; + cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y); + [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split; + try assumption; split; assumption] + cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y)); + [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption; + apply (. #‡(H1 ?)); + apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x); + assumption;] clear Hcut; + split; apply (if ?? (A_is_saturation ???)); intros 2; + [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)] + cases Hletin; clear Hletin; cases x; clear x; + cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X); + [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption; + exists [1,3: apply w] split; assumption;] + cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X)); + [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;] + apply Hcut2; assumption. +qed.